{"title":"斯特克洛夫特征函数节点集的豪斯多夫量界","authors":"Stefano Decio","doi":"10.2140/apde.2024.17.1237","DOIUrl":null,"url":null,"abstract":"<p>We study nodal sets of Steklov eigenfunctions in a bounded domain with <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">𝒞</mi></mrow><mrow><mn>2</mn></mrow></msup></math> boundary. Our first result is a lower bound for the Hausdorff measure of the nodal set: we show that, for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></msub></math> a Steklov eigenfunction with eigenvalue <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi><mo>≠</mo><mn>0</mn></math>, we have <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></msub>\n<mo>=</mo> <mn>0</mn><mo stretchy=\"false\">}</mo><mo stretchy=\"false\">)</mo>\n<mo>≥</mo> <msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\"normal\">Ω</mi></mrow></msub></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\"normal\">Ω</mi></mrow></msub></math> is independent of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi></math>. We also prove an almost sharp upper bound, namely, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi mathvariant=\"bold-script\">ℋ</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></msub>\n<mo>=</mo> <mn>0</mn><mo stretchy=\"false\">}</mo><mo stretchy=\"false\">)</mo>\n<mo>≤</mo> <msub><mrow><mi>C</mi></mrow><mrow><mi mathvariant=\"normal\">Ω</mi></mrow></msub><mi>λ</mi><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\"false\">(</mo><mi>λ</mi>\n<mo>+</mo>\n<mi>e</mi><mo stretchy=\"false\">)</mo></math>. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"2011 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff measure bounds for nodal sets of Steklov eigenfunctions\",\"authors\":\"Stefano Decio\",\"doi\":\"10.2140/apde.2024.17.1237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study nodal sets of Steklov eigenfunctions in a bounded domain with <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">𝒞</mi></mrow><mrow><mn>2</mn></mrow></msup></math> boundary. Our first result is a lower bound for the Hausdorff measure of the nodal set: we show that, for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></msub></math> a Steklov eigenfunction with eigenvalue <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>λ</mi><mo>≠</mo><mn>0</mn></math>, we have <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></msub>\\n<mo>=</mo> <mn>0</mn><mo stretchy=\\\"false\\\">}</mo><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≥</mo> <msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\\\"normal\\\">Ω</mi></mrow></msub></math>, where <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>c</mi></mrow><mrow><mi mathvariant=\\\"normal\\\">Ω</mi></mrow></msub></math> is independent of <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>λ</mi></math>. We also prove an almost sharp upper bound, namely, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi mathvariant=\\\"bold-script\\\">ℋ</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>λ</mi></mrow></msub>\\n<mo>=</mo> <mn>0</mn><mo stretchy=\\\"false\\\">}</mo><mo stretchy=\\\"false\\\">)</mo>\\n<mo>≤</mo> <msub><mrow><mi>C</mi></mrow><mrow><mi mathvariant=\\\"normal\\\">Ω</mi></mrow></msub><mi>λ</mi><mi>log</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mo stretchy=\\\"false\\\">(</mo><mi>λ</mi>\\n<mo>+</mo>\\n<mi>e</mi><mo stretchy=\\\"false\\\">)</mo></math>. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"2011 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1237\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1237","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hausdorff measure bounds for nodal sets of Steklov eigenfunctions
We study nodal sets of Steklov eigenfunctions in a bounded domain with boundary. Our first result is a lower bound for the Hausdorff measure of the nodal set: we show that, for a Steklov eigenfunction with eigenvalue , we have , where is independent of . We also prove an almost sharp upper bound, namely, .
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.