{"title":"半谐波地图的高原流或热流","authors":"Michael Struwe","doi":"10.2140/apde.2024.17.1397","DOIUrl":null,"url":null,"abstract":"<p>Using the interpretation of the half-Laplacian on <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math> as the Dirichlet-to-Neumann operator for the Laplace equation on the ball <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>B</mi></math>, we devise a classical approach to the heat flow for half-harmonic maps from <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math> to a closed target manifold <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math>, recently studied by Wettstein, and for arbitrary finite-energy data we obtain a result fully analogous to the author’s 1985 results for the harmonic map heat flow of surfaces and in similar generality. When <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math> is a smoothly embedded, oriented closed curve <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Γ</mi>\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math>, the half-harmonic map heat flow may be viewed as an alternative gradient flow for a variant of the Plateau problem of disc-type minimal surfaces. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"27 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plateau flow or the heat flow for half-harmonic maps\",\"authors\":\"Michael Struwe\",\"doi\":\"10.2140/apde.2024.17.1397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using the interpretation of the half-Laplacian on <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math> as the Dirichlet-to-Neumann operator for the Laplace equation on the ball <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>B</mi></math>, we devise a classical approach to the heat flow for half-harmonic maps from <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math> to a closed target manifold <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math>, recently studied by Wettstein, and for arbitrary finite-energy data we obtain a result fully analogous to the author’s 1985 results for the harmonic map heat flow of surfaces and in similar generality. When <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>N</mi></math> is a smoothly embedded, oriented closed curve <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>Γ</mi>\\n<mo>⊂</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>n</mi></mrow></msup></math>, the half-harmonic map heat flow may be viewed as an alternative gradient flow for a variant of the Plateau problem of disc-type minimal surfaces. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1397\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1397","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Plateau flow or the heat flow for half-harmonic maps
Using the interpretation of the half-Laplacian on as the Dirichlet-to-Neumann operator for the Laplace equation on the ball , we devise a classical approach to the heat flow for half-harmonic maps from to a closed target manifold , recently studied by Wettstein, and for arbitrary finite-energy data we obtain a result fully analogous to the author’s 1985 results for the harmonic map heat flow of surfaces and in similar generality. When is a smoothly embedded, oriented closed curve , the half-harmonic map heat flow may be viewed as an alternative gradient flow for a variant of the Plateau problem of disc-type minimal surfaces.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.