{"title":"关于风险和变异性测量的连续性和一致性的说明","authors":"Niushan Gao, Foivos Xanthos","doi":"arxiv-2405.09766","DOIUrl":null,"url":null,"abstract":"In this short note, we show that every convex, order bounded above functional\non a Banach lattice is automatically norm continuous. This improves a result in\n\\cite{RS06} and applies to many deviation and variability measures. We also\nshow that an order-continuous, law-invariant functional on an Orlicz space is\nstrongly consistent everywhere, extending a result in \\cite{KSZ14}.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on continuity and consistency of measures of risk and variability\",\"authors\":\"Niushan Gao, Foivos Xanthos\",\"doi\":\"arxiv-2405.09766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note, we show that every convex, order bounded above functional\\non a Banach lattice is automatically norm continuous. This improves a result in\\n\\\\cite{RS06} and applies to many deviation and variability measures. We also\\nshow that an order-continuous, law-invariant functional on an Orlicz space is\\nstrongly consistent everywhere, extending a result in \\\\cite{KSZ14}.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.09766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.09766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A note on continuity and consistency of measures of risk and variability
In this short note, we show that every convex, order bounded above functional
on a Banach lattice is automatically norm continuous. This improves a result in
\cite{RS06} and applies to many deviation and variability measures. We also
show that an order-continuous, law-invariant functional on an Orlicz space is
strongly consistent everywhere, extending a result in \cite{KSZ14}.