关于风险和变异性测量的连续性和一致性的说明

Niushan Gao, Foivos Xanthos
{"title":"关于风险和变异性测量的连续性和一致性的说明","authors":"Niushan Gao, Foivos Xanthos","doi":"arxiv-2405.09766","DOIUrl":null,"url":null,"abstract":"In this short note, we show that every convex, order bounded above functional\non a Banach lattice is automatically norm continuous. This improves a result in\n\\cite{RS06} and applies to many deviation and variability measures. We also\nshow that an order-continuous, law-invariant functional on an Orlicz space is\nstrongly consistent everywhere, extending a result in \\cite{KSZ14}.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on continuity and consistency of measures of risk and variability\",\"authors\":\"Niushan Gao, Foivos Xanthos\",\"doi\":\"arxiv-2405.09766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note, we show that every convex, order bounded above functional\\non a Banach lattice is automatically norm continuous. This improves a result in\\n\\\\cite{RS06} and applies to many deviation and variability measures. We also\\nshow that an order-continuous, law-invariant functional on an Orlicz space is\\nstrongly consistent everywhere, extending a result in \\\\cite{KSZ14}.\",\"PeriodicalId\":501128,\"journal\":{\"name\":\"arXiv - QuantFin - Risk Management\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Risk Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.09766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.09766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们证明了巴拿赫网格上每一个凸的、有阶有界的上面函数都是自动规范连续的。这改进了(cite{RS06})中的一个结果,并适用于许多偏差和变异度量。我们还证明了奥利奇空间上的阶连续、律不变函数在任何地方都是强一致的,这扩展了(cite{KSZ14}中的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on continuity and consistency of measures of risk and variability
In this short note, we show that every convex, order bounded above functional on a Banach lattice is automatically norm continuous. This improves a result in \cite{RS06} and applies to many deviation and variability measures. We also show that an order-continuous, law-invariant functional on an Orlicz space is strongly consistent everywhere, extending a result in \cite{KSZ14}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信