Abeer M. Shoaib, Tamer F. Ahmed, Abdelrahman G. Gadallah, Ahmed A. Bhran
{"title":"缓解乙二醇脱水装置芳香烃排放的可用替代品分析研究","authors":"Abeer M. Shoaib, Tamer F. Ahmed, Abdelrahman G. Gadallah, Ahmed A. Bhran","doi":"10.1155/2024/3643487","DOIUrl":null,"url":null,"abstract":"A natural gas (NG) dehydration unit based on glycol absorption is considered one of the most important gas processing units, aiming to decrease water content and consequently adjust its dew point. However, during this process, not only water is absorbed by the glycol solvent, but also some aromatic compounds, including benzene, toluene, ethylbenzene, and xylene (BTEX), in addition to volatile organic compounds (VOC), are absorbed. These compounds are released during glycol regeneration into the atmosphere, resulting in environmental pollution and consequent catastrophic mental and physical health problems. This study aims to minimize BTEX emissions while ensuring efficient dew point control. Various strategies have been adopted to control BTEX emissions, but the present work focuses on optimizing operating conditions and investigating the influence of operational variables on BTEX emissions, as well as NG water content. LINGO optimization software and HYSYS (version 11) are used to find the plant’s optimum conditions for minimizing BTEX emissions and satisfying efficient dew point control. Simulation results show that stripping gas, triethylene glycol (TEG) circulation rate, and inlet feed gas temperature significantly affect BTEX emissions. The proposed optimum operating conditions in this work resulted in a reduction in BTEX emissions by about 81% while satisfying the required NG dew point. Furthermore, two quadratic equations are developed based on regression analysis for efficient calculation of the BTEX emissions and water dew point at any operational variables.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":"31 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit\",\"authors\":\"Abeer M. Shoaib, Tamer F. Ahmed, Abdelrahman G. Gadallah, Ahmed A. Bhran\",\"doi\":\"10.1155/2024/3643487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A natural gas (NG) dehydration unit based on glycol absorption is considered one of the most important gas processing units, aiming to decrease water content and consequently adjust its dew point. However, during this process, not only water is absorbed by the glycol solvent, but also some aromatic compounds, including benzene, toluene, ethylbenzene, and xylene (BTEX), in addition to volatile organic compounds (VOC), are absorbed. These compounds are released during glycol regeneration into the atmosphere, resulting in environmental pollution and consequent catastrophic mental and physical health problems. This study aims to minimize BTEX emissions while ensuring efficient dew point control. Various strategies have been adopted to control BTEX emissions, but the present work focuses on optimizing operating conditions and investigating the influence of operational variables on BTEX emissions, as well as NG water content. LINGO optimization software and HYSYS (version 11) are used to find the plant’s optimum conditions for minimizing BTEX emissions and satisfying efficient dew point control. Simulation results show that stripping gas, triethylene glycol (TEG) circulation rate, and inlet feed gas temperature significantly affect BTEX emissions. The proposed optimum operating conditions in this work resulted in a reduction in BTEX emissions by about 81% while satisfying the required NG dew point. Furthermore, two quadratic equations are developed based on regression analysis for efficient calculation of the BTEX emissions and water dew point at any operational variables.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3643487\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/3643487","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit
A natural gas (NG) dehydration unit based on glycol absorption is considered one of the most important gas processing units, aiming to decrease water content and consequently adjust its dew point. However, during this process, not only water is absorbed by the glycol solvent, but also some aromatic compounds, including benzene, toluene, ethylbenzene, and xylene (BTEX), in addition to volatile organic compounds (VOC), are absorbed. These compounds are released during glycol regeneration into the atmosphere, resulting in environmental pollution and consequent catastrophic mental and physical health problems. This study aims to minimize BTEX emissions while ensuring efficient dew point control. Various strategies have been adopted to control BTEX emissions, but the present work focuses on optimizing operating conditions and investigating the influence of operational variables on BTEX emissions, as well as NG water content. LINGO optimization software and HYSYS (version 11) are used to find the plant’s optimum conditions for minimizing BTEX emissions and satisfying efficient dew point control. Simulation results show that stripping gas, triethylene glycol (TEG) circulation rate, and inlet feed gas temperature significantly affect BTEX emissions. The proposed optimum operating conditions in this work resulted in a reduction in BTEX emissions by about 81% while satisfying the required NG dew point. Furthermore, two quadratic equations are developed based on regression analysis for efficient calculation of the BTEX emissions and water dew point at any operational variables.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.