Kyra J. Fuchs, J.H. Frederik Falkenburg, Marieke Griffioen
{"title":"预测、监测或控制同种异体造血细胞移植后 GvL 和 GvHD 的主要组织相容性抗原","authors":"Kyra J. Fuchs, J.H. Frederik Falkenburg, Marieke Griffioen","doi":"10.1016/j.beha.2024.101555","DOIUrl":null,"url":null,"abstract":"<div><p>Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.</p></div>","PeriodicalId":8744,"journal":{"name":"Best Practice & Research Clinical Haematology","volume":"37 2","pages":"Article 101555"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1521692624000215/pdfft?md5=4151fa3924ab77b95bb5f58ae2a5d38a&pid=1-s2.0-S1521692624000215-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Minor histocompatibility antigens to predict, monitor or manipulate GvL and GvHD after allogeneic hematopoietic cell transplantation\",\"authors\":\"Kyra J. Fuchs, J.H. Frederik Falkenburg, Marieke Griffioen\",\"doi\":\"10.1016/j.beha.2024.101555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.</p></div>\",\"PeriodicalId\":8744,\"journal\":{\"name\":\"Best Practice & Research Clinical Haematology\",\"volume\":\"37 2\",\"pages\":\"Article 101555\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1521692624000215/pdfft?md5=4151fa3924ab77b95bb5f58ae2a5d38a&pid=1-s2.0-S1521692624000215-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Best Practice & Research Clinical Haematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1521692624000215\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best Practice & Research Clinical Haematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521692624000215","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Minor histocompatibility antigens to predict, monitor or manipulate GvL and GvHD after allogeneic hematopoietic cell transplantation
Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.
期刊介绍:
Best Practice & Research Clinical Haematology publishes review articles integrating the results from the latest original research articles into practical, evidence-based review articles. These articles seek to address the key clinical issues of diagnosis, treatment and patient management. Each issue follows a problem-orientated approach which focuses on the key questions to be addressed, clearly defining what is known and not known, covering the spectrum of clinical and laboratory haematological practice and research. Although most reviews are invited, the Editor welcomes suggestions from potential authors.