{"title":"基于多种方法的中国长江流域上游分流域径流变化评估","authors":"Xingbo Wang, Shuanghu Zhang, Yiman Tian","doi":"10.1007/s40333-024-0010-6","DOIUrl":null,"url":null,"abstract":"<p>Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity. This study considered six sub-basins in the upper reaches of the Yangtze River basin, China, to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020. Linear regression, Mann-Kendall test, and sliding <i>t</i>-test were used to study the trend of the hydrometeorological elements, while cumulative distance level and ordered clustering methods were applied to identify mutation points. The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods, i.e., the rainfall-runoff relationship method, slope variation method, and variable infiltration capacity (Budyko) hypothesis method. Then, the availability and stability of the three methods were compared. The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020, with an abrupt change in 1985. For attribution analysis, the runoff series could be divided into two phases, i.e., 1961–1985 (baseline period) and 1986–2020 (changing period); and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods, while the slope variation and Budyko hypothesis methods had highly consistent results. Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin. Moreover, human disturbance was the main factor that contributed to the runoff changes, accounting for 53.0%–82.0%; and the contribution of climate factors to the runoff change was 17.0%–47.0%, making it the secondary factor, in which precipitation was the most representative climate factor. These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods\",\"authors\":\"Xingbo Wang, Shuanghu Zhang, Yiman Tian\",\"doi\":\"10.1007/s40333-024-0010-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity. This study considered six sub-basins in the upper reaches of the Yangtze River basin, China, to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020. Linear regression, Mann-Kendall test, and sliding <i>t</i>-test were used to study the trend of the hydrometeorological elements, while cumulative distance level and ordered clustering methods were applied to identify mutation points. The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods, i.e., the rainfall-runoff relationship method, slope variation method, and variable infiltration capacity (Budyko) hypothesis method. Then, the availability and stability of the three methods were compared. The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020, with an abrupt change in 1985. For attribution analysis, the runoff series could be divided into two phases, i.e., 1961–1985 (baseline period) and 1986–2020 (changing period); and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods, while the slope variation and Budyko hypothesis methods had highly consistent results. Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin. Moreover, human disturbance was the main factor that contributed to the runoff changes, accounting for 53.0%–82.0%; and the contribution of climate factors to the runoff change was 17.0%–47.0%, making it the secondary factor, in which precipitation was the most representative climate factor. These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.</p>\",\"PeriodicalId\":49169,\"journal\":{\"name\":\"Journal of Arid Land\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Arid Land\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s40333-024-0010-6\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0010-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods
Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity. This study considered six sub-basins in the upper reaches of the Yangtze River basin, China, to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020. Linear regression, Mann-Kendall test, and sliding t-test were used to study the trend of the hydrometeorological elements, while cumulative distance level and ordered clustering methods were applied to identify mutation points. The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods, i.e., the rainfall-runoff relationship method, slope variation method, and variable infiltration capacity (Budyko) hypothesis method. Then, the availability and stability of the three methods were compared. The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020, with an abrupt change in 1985. For attribution analysis, the runoff series could be divided into two phases, i.e., 1961–1985 (baseline period) and 1986–2020 (changing period); and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods, while the slope variation and Budyko hypothesis methods had highly consistent results. Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin. Moreover, human disturbance was the main factor that contributed to the runoff changes, accounting for 53.0%–82.0%; and the contribution of climate factors to the runoff change was 17.0%–47.0%, making it the secondary factor, in which precipitation was the most representative climate factor. These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.