{"title":"使用米斯拉-格里斯草图绘制更好的差分私有近似直方图和重击图","authors":"Christian Janos Lebeda, Jakub Tetek","doi":"10.1145/3665252.3665255","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of computing differentially private approximate histograms and heavy hitters in a stream of elements. In the non-private setting, this is often done using the sketch of Misra and Gries [Science of Computer Programming, 1982]. Chan, Li, Shi, and Xu [PETS 2012] describe a differentially private version of the Misra-Gries sketch, but the amount of noise it adds can be large and scales linearly with the size of the sketch; the more accurate the sketch is, the more noise this approach has to add. We present a better mechanism for releasing a Misra-Gries sketch under (ε, δ)-differential privacy. It adds noise with magnitude independent of the size of the sketch; in fact, the maximum error coming from the noise is the same as the best known in the private non-streaming setting, up to a constant factor. Our mechanism is simple and likely to be practical. In the full version of the paper we also give a simple post-processing step of the Misra-Gries sketch that does not increase the worst-case error guarantee. It is sufficient to add noise to this new sketch with less than twice the magnitude of the non-streaming setting. This improves on the previous result for \"-differential privacy where the noise scales linearly to the size of the sketch.</p>","PeriodicalId":501169,"journal":{"name":"ACM SIGMOD Record","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Better Differentially Private Approximate Histograms and Heavy Hitters using the Misra-Gries Sketch\",\"authors\":\"Christian Janos Lebeda, Jakub Tetek\",\"doi\":\"10.1145/3665252.3665255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the problem of computing differentially private approximate histograms and heavy hitters in a stream of elements. In the non-private setting, this is often done using the sketch of Misra and Gries [Science of Computer Programming, 1982]. Chan, Li, Shi, and Xu [PETS 2012] describe a differentially private version of the Misra-Gries sketch, but the amount of noise it adds can be large and scales linearly with the size of the sketch; the more accurate the sketch is, the more noise this approach has to add. We present a better mechanism for releasing a Misra-Gries sketch under (ε, δ)-differential privacy. It adds noise with magnitude independent of the size of the sketch; in fact, the maximum error coming from the noise is the same as the best known in the private non-streaming setting, up to a constant factor. Our mechanism is simple and likely to be practical. In the full version of the paper we also give a simple post-processing step of the Misra-Gries sketch that does not increase the worst-case error guarantee. It is sufficient to add noise to this new sketch with less than twice the magnitude of the non-streaming setting. This improves on the previous result for \\\"-differential privacy where the noise scales linearly to the size of the sketch.</p>\",\"PeriodicalId\":501169,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3665252.3665255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3665252.3665255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Better Differentially Private Approximate Histograms and Heavy Hitters using the Misra-Gries Sketch
We consider the problem of computing differentially private approximate histograms and heavy hitters in a stream of elements. In the non-private setting, this is often done using the sketch of Misra and Gries [Science of Computer Programming, 1982]. Chan, Li, Shi, and Xu [PETS 2012] describe a differentially private version of the Misra-Gries sketch, but the amount of noise it adds can be large and scales linearly with the size of the sketch; the more accurate the sketch is, the more noise this approach has to add. We present a better mechanism for releasing a Misra-Gries sketch under (ε, δ)-differential privacy. It adds noise with magnitude independent of the size of the sketch; in fact, the maximum error coming from the noise is the same as the best known in the private non-streaming setting, up to a constant factor. Our mechanism is simple and likely to be practical. In the full version of the paper we also give a simple post-processing step of the Misra-Gries sketch that does not increase the worst-case error guarantee. It is sufficient to add noise to this new sketch with less than twice the magnitude of the non-streaming setting. This improves on the previous result for "-differential privacy where the noise scales linearly to the size of the sketch.