准周期强迫 NLS 的可重复性和非线性稳定性

IF 0.5 4区 数学 Q3 MATHEMATICS
E. Haus, B. Langella, A. Maspero, M. Procesi
{"title":"准周期强迫 NLS 的可重复性和非线性稳定性","authors":"E. Haus, B. Langella, A. Maspero, M. Procesi","doi":"10.4310/pamq.2024.v20.n3.a8","DOIUrl":null,"url":null,"abstract":"Motivated by the problem of long time stability vs. instability of KAM tori of the Nonlinear cubic Schrödinger equation (NLS) on the two dimensional torus $\\mathbb{T}^2 := (\\mathbb{R}/2 \\pi \\mathbb{Z})^2$, we consider a quasi-periodically forced NLS equation on $\\mathbb{T}^2$ arising from the linearization of the NLS at a KAM torus. We prove a reducibility result as well as long time stability of the origin. The main novelty is to obtain the precise asymptotic expansion of the frequencies which allows us to impose Melnikov conditions at arbitrary order.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducibility and nonlinear stability for a quasi-periodically forced NLS\",\"authors\":\"E. Haus, B. Langella, A. Maspero, M. Procesi\",\"doi\":\"10.4310/pamq.2024.v20.n3.a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the problem of long time stability vs. instability of KAM tori of the Nonlinear cubic Schrödinger equation (NLS) on the two dimensional torus $\\\\mathbb{T}^2 := (\\\\mathbb{R}/2 \\\\pi \\\\mathbb{Z})^2$, we consider a quasi-periodically forced NLS equation on $\\\\mathbb{T}^2$ arising from the linearization of the NLS at a KAM torus. We prove a reducibility result as well as long time stability of the origin. The main novelty is to obtain the precise asymptotic expansion of the frequencies which allows us to impose Melnikov conditions at arbitrary order.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n3.a8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n3.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受二维环$\mathbb{T}^2 := (\mathbb{R}/2 \pi \mathbb{Z})^2$上的非线性三次薛定谔方程(NLS)的 KAM 环的长期稳定性与不稳定性问题的启发,我们考虑了在 KAM 环上由 NLS 的线性化引起的 $\mathbb{T}^2$ 上的准周期强迫 NLS 方程。我们证明了还原性结果以及原点的长期稳定性。主要的新颖之处在于获得了频率的精确渐近展开,这使得我们可以在任意阶施加梅尔尼科夫条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducibility and nonlinear stability for a quasi-periodically forced NLS
Motivated by the problem of long time stability vs. instability of KAM tori of the Nonlinear cubic Schrödinger equation (NLS) on the two dimensional torus $\mathbb{T}^2 := (\mathbb{R}/2 \pi \mathbb{Z})^2$, we consider a quasi-periodically forced NLS equation on $\mathbb{T}^2$ arising from the linearization of the NLS at a KAM torus. We prove a reducibility result as well as long time stability of the origin. The main novelty is to obtain the precise asymptotic expansion of the frequencies which allows us to impose Melnikov conditions at arbitrary order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信