{"title":"关于正常的塞沙德里分层","authors":"Rocco Chirivì, Xin Fang, Peter Littelmann","doi":"10.4310/pamq.2024.v20.n3.a3","DOIUrl":null,"url":null,"abstract":"The existence of a Seshadri stratification on an embedded projective variety provides a flat degeneration of the variety to a union of projective toric varieties, called a semi-toric variety. Such a stratification is said to be normal when each irreducible component of the semi-toric variety is a normal toric variety. In this case, we show that a Gröbner basis of the defining ideal of the semi-toric variety can be lifted to define the embedded projective variety. Applications to Koszul and Gorenstein properties are discussed. Relations between LS‑algebras and certain Seshadri stratifications are studied.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"52 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On normal Seshadri stratifications\",\"authors\":\"Rocco Chirivì, Xin Fang, Peter Littelmann\",\"doi\":\"10.4310/pamq.2024.v20.n3.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of a Seshadri stratification on an embedded projective variety provides a flat degeneration of the variety to a union of projective toric varieties, called a semi-toric variety. Such a stratification is said to be normal when each irreducible component of the semi-toric variety is a normal toric variety. In this case, we show that a Gröbner basis of the defining ideal of the semi-toric variety can be lifted to define the embedded projective variety. Applications to Koszul and Gorenstein properties are discussed. Relations between LS‑algebras and certain Seshadri stratifications are studied.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n3.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n3.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
内嵌射影变种上存在的塞沙德里分层提供了变种的平面退化,使其成为射影环变种的结合,称为半oric变种。当半oric 变的每个不可还原分量都是一个正常的 toric 变时,这种分层就被称为正常分层。在这种情况下,我们证明了半oric 变的定义理想的格罗伯纳基可以被提升以定义嵌入的射影变。我们还讨论了科斯祖尔和戈伦斯坦性质的应用。此外,我们还研究了 LS 后代数与某些 Seshadri 分层之间的关系。
The existence of a Seshadri stratification on an embedded projective variety provides a flat degeneration of the variety to a union of projective toric varieties, called a semi-toric variety. Such a stratification is said to be normal when each irreducible component of the semi-toric variety is a normal toric variety. In this case, we show that a Gröbner basis of the defining ideal of the semi-toric variety can be lifted to define the embedded projective variety. Applications to Koszul and Gorenstein properties are discussed. Relations between LS‑algebras and certain Seshadri stratifications are studied.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.