具有两个奇异点的 Weyl 模块的半无限同调

IF 0.5 4区 数学 Q3 MATHEMATICS
Giorgia Fortuna, Davide Lombardo, Andrea Maffei, Valerio Melani
{"title":"具有两个奇异点的 Weyl 模块的半无限同调","authors":"Giorgia Fortuna, Davide Lombardo, Andrea Maffei, Valerio Melani","doi":"10.4310/pamq.2024.v20.n3.a6","DOIUrl":null,"url":null,"abstract":"In their study of spherical representations of an affine Lie algebra at the critical level and of unramified opers, Frenkel and Gaitsgory introduced what they called the <i>Weyl module</i> $\\mathbb{V}^\\lambda$ corresponding to a dominant weight $\\lambda$. This object plays an important role in the theory. In $\\href{ https://doi.org/10.1007/s00220-022-04430-w}{[4]}$, we introduced a possible analogue $\\mathbb{V}^{\\lambda,\\mu}_{2}$ of the Weyl module in the setting of opers with two singular points, and in the case of $\\mathfrak{sl}(2)$ we proved that it has the ‘correct’ endomorphism ring. In this paper, we compute the semi-infinite cohomology of $\\mathbb{V}^{\\lambda,\\mu}_{2}$ and we show that it does not share some of the properties of the semi-infinite cohomology of the Weyl module of Frenkel and Gaitsgory. For this reason, we introduce a new module $\\tilde{\\mathbb{V}}^{\\lambda,\\mu}_{2}$ which, in the case of $\\mathfrak{sl}(2)$, enjoys all the expected properties of a Weyl module.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"67 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The semi-infinite cohomology of Weyl modules with two singular points\",\"authors\":\"Giorgia Fortuna, Davide Lombardo, Andrea Maffei, Valerio Melani\",\"doi\":\"10.4310/pamq.2024.v20.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In their study of spherical representations of an affine Lie algebra at the critical level and of unramified opers, Frenkel and Gaitsgory introduced what they called the <i>Weyl module</i> $\\\\mathbb{V}^\\\\lambda$ corresponding to a dominant weight $\\\\lambda$. This object plays an important role in the theory. In $\\\\href{ https://doi.org/10.1007/s00220-022-04430-w}{[4]}$, we introduced a possible analogue $\\\\mathbb{V}^{\\\\lambda,\\\\mu}_{2}$ of the Weyl module in the setting of opers with two singular points, and in the case of $\\\\mathfrak{sl}(2)$ we proved that it has the ‘correct’ endomorphism ring. In this paper, we compute the semi-infinite cohomology of $\\\\mathbb{V}^{\\\\lambda,\\\\mu}_{2}$ and we show that it does not share some of the properties of the semi-infinite cohomology of the Weyl module of Frenkel and Gaitsgory. For this reason, we introduce a new module $\\\\tilde{\\\\mathbb{V}}^{\\\\lambda,\\\\mu}_{2}$ which, in the case of $\\\\mathfrak{sl}(2)$, enjoys all the expected properties of a Weyl module.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n3.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n3.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

弗伦克尔和盖茨戈里在研究临界水平上的仿射李代数的球面表示和未成帧运算符时,引入了他们所谓的与主重 $\lambda$ 相对应的韦尔模块 $\mathbb{V}^\lambda$。这个对象在理论中起着重要作用。在 $\href{ https://doi.org/10.1007/s00220-022-04430-w}{[4]}$中,我们介绍了在有两个奇异点的运算器中韦尔模量的可能类似物$\mathbb{V}^{\lambda,\mu}_{2}$,并且在$\mathfrak{sl}(2)$的情况下,我们证明了它有 "正确的 "内形环。在本文中,我们计算了 $\mathbb{V}^{lambda,\mu}_{2}$ 的半无限同调,并证明它不具有 Frenkel 和 Gaitsgory 的 Weyl 模块的半无限同调的某些性质。因此,我们引入了一个新模块 $\tilde{mathbb{V}}^\{lambda,\mu}_{2}$ ,在 $\mathfrak{sl}(2)$ 的情况下,它享有韦尔模块的所有预期性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The semi-infinite cohomology of Weyl modules with two singular points
In their study of spherical representations of an affine Lie algebra at the critical level and of unramified opers, Frenkel and Gaitsgory introduced what they called the Weyl module $\mathbb{V}^\lambda$ corresponding to a dominant weight $\lambda$. This object plays an important role in the theory. In $\href{ https://doi.org/10.1007/s00220-022-04430-w}{[4]}$, we introduced a possible analogue $\mathbb{V}^{\lambda,\mu}_{2}$ of the Weyl module in the setting of opers with two singular points, and in the case of $\mathfrak{sl}(2)$ we proved that it has the ‘correct’ endomorphism ring. In this paper, we compute the semi-infinite cohomology of $\mathbb{V}^{\lambda,\mu}_{2}$ and we show that it does not share some of the properties of the semi-infinite cohomology of the Weyl module of Frenkel and Gaitsgory. For this reason, we introduce a new module $\tilde{\mathbb{V}}^{\lambda,\mu}_{2}$ which, in the case of $\mathfrak{sl}(2)$, enjoys all the expected properties of a Weyl module.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信