Giorgia Fortuna, Davide Lombardo, Andrea Maffei, Valerio Melani
{"title":"具有两个奇异点的 Weyl 模块的半无限同调","authors":"Giorgia Fortuna, Davide Lombardo, Andrea Maffei, Valerio Melani","doi":"10.4310/pamq.2024.v20.n3.a6","DOIUrl":null,"url":null,"abstract":"In their study of spherical representations of an affine Lie algebra at the critical level and of unramified opers, Frenkel and Gaitsgory introduced what they called the <i>Weyl module</i> $\\mathbb{V}^\\lambda$ corresponding to a dominant weight $\\lambda$. This object plays an important role in the theory. In $\\href{ https://doi.org/10.1007/s00220-022-04430-w}{[4]}$, we introduced a possible analogue $\\mathbb{V}^{\\lambda,\\mu}_{2}$ of the Weyl module in the setting of opers with two singular points, and in the case of $\\mathfrak{sl}(2)$ we proved that it has the ‘correct’ endomorphism ring. In this paper, we compute the semi-infinite cohomology of $\\mathbb{V}^{\\lambda,\\mu}_{2}$ and we show that it does not share some of the properties of the semi-infinite cohomology of the Weyl module of Frenkel and Gaitsgory. For this reason, we introduce a new module $\\tilde{\\mathbb{V}}^{\\lambda,\\mu}_{2}$ which, in the case of $\\mathfrak{sl}(2)$, enjoys all the expected properties of a Weyl module.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"67 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The semi-infinite cohomology of Weyl modules with two singular points\",\"authors\":\"Giorgia Fortuna, Davide Lombardo, Andrea Maffei, Valerio Melani\",\"doi\":\"10.4310/pamq.2024.v20.n3.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In their study of spherical representations of an affine Lie algebra at the critical level and of unramified opers, Frenkel and Gaitsgory introduced what they called the <i>Weyl module</i> $\\\\mathbb{V}^\\\\lambda$ corresponding to a dominant weight $\\\\lambda$. This object plays an important role in the theory. In $\\\\href{ https://doi.org/10.1007/s00220-022-04430-w}{[4]}$, we introduced a possible analogue $\\\\mathbb{V}^{\\\\lambda,\\\\mu}_{2}$ of the Weyl module in the setting of opers with two singular points, and in the case of $\\\\mathfrak{sl}(2)$ we proved that it has the ‘correct’ endomorphism ring. In this paper, we compute the semi-infinite cohomology of $\\\\mathbb{V}^{\\\\lambda,\\\\mu}_{2}$ and we show that it does not share some of the properties of the semi-infinite cohomology of the Weyl module of Frenkel and Gaitsgory. For this reason, we introduce a new module $\\\\tilde{\\\\mathbb{V}}^{\\\\lambda,\\\\mu}_{2}$ which, in the case of $\\\\mathfrak{sl}(2)$, enjoys all the expected properties of a Weyl module.\",\"PeriodicalId\":54526,\"journal\":{\"name\":\"Pure and Applied Mathematics Quarterly\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Mathematics Quarterly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/pamq.2024.v20.n3.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2024.v20.n3.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The semi-infinite cohomology of Weyl modules with two singular points
In their study of spherical representations of an affine Lie algebra at the critical level and of unramified opers, Frenkel and Gaitsgory introduced what they called the Weyl module $\mathbb{V}^\lambda$ corresponding to a dominant weight $\lambda$. This object plays an important role in the theory. In $\href{ https://doi.org/10.1007/s00220-022-04430-w}{[4]}$, we introduced a possible analogue $\mathbb{V}^{\lambda,\mu}_{2}$ of the Weyl module in the setting of opers with two singular points, and in the case of $\mathfrak{sl}(2)$ we proved that it has the ‘correct’ endomorphism ring. In this paper, we compute the semi-infinite cohomology of $\mathbb{V}^{\lambda,\mu}_{2}$ and we show that it does not share some of the properties of the semi-infinite cohomology of the Weyl module of Frenkel and Gaitsgory. For this reason, we introduce a new module $\tilde{\mathbb{V}}^{\lambda,\mu}_{2}$ which, in the case of $\mathfrak{sl}(2)$, enjoys all the expected properties of a Weyl module.
期刊介绍:
Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.