从贝索夫空间到某些解析函数空间的类塞萨洛算子

Pub Date : 2024-05-15 DOI:10.1007/s40315-024-00542-7
Fangmei Sun, Fangqin Ye, Liuchang Zhou
{"title":"从贝索夫空间到某些解析函数空间的类塞萨洛算子","authors":"Fangmei Sun, Fangqin Ye, Liuchang Zhou","doi":"10.1007/s40315-024-00542-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, for <span>\\(p&gt;1\\)</span> and <span>\\(s&gt;1\\)</span>, we characterize completely the boundedness and compactness of a Cesàro-like operator from the Besov space <span>\\(B_p\\)</span> into a Banach space <i>X</i> between the mean Lipschitz space <span>\\(\\Lambda ^s_{1/s}\\)</span> and the Bloch space. In particular, for <span>\\(p=s=2\\)</span>, we complete a previous result from the literature.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cesàro-like Operator from Besov Spaces to Some Spaces of Analytic Functions\",\"authors\":\"Fangmei Sun, Fangqin Ye, Liuchang Zhou\",\"doi\":\"10.1007/s40315-024-00542-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, for <span>\\\\(p&gt;1\\\\)</span> and <span>\\\\(s&gt;1\\\\)</span>, we characterize completely the boundedness and compactness of a Cesàro-like operator from the Besov space <span>\\\\(B_p\\\\)</span> into a Banach space <i>X</i> between the mean Lipschitz space <span>\\\\(\\\\Lambda ^s_{1/s}\\\\)</span> and the Bloch space. In particular, for <span>\\\\(p=s=2\\\\)</span>, we complete a previous result from the literature.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00542-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00542-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,对于\(p>1\)和\(s>1\),我们完全描述了从贝索夫空间\(B_p\)到介于平均利普齐兹空间\(\Lambda ^s_{1/s}\)和布洛赫空间之间的巴拿赫空间X的类塞萨罗算子的有界性和紧凑性。特别是,对于 \(p=s=2\),我们完成了之前文献中的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Cesàro-like Operator from Besov Spaces to Some Spaces of Analytic Functions

In this paper, for \(p>1\) and \(s>1\), we characterize completely the boundedness and compactness of a Cesàro-like operator from the Besov space \(B_p\) into a Banach space X between the mean Lipschitz space \(\Lambda ^s_{1/s}\) and the Bloch space. In particular, for \(p=s=2\), we complete a previous result from the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信