Patryk Lipka-Bartosik, Christopher T. Chubb, Joseph M. Renes, Marco Tomamichel, Kamil Korzekwa
{"title":"超越一阶渐近的量子二分法和相干热力学","authors":"Patryk Lipka-Bartosik, Christopher T. Chubb, Joseph M. Renes, Marco Tomamichel, Kamil Korzekwa","doi":"10.1103/prxquantum.5.020335","DOIUrl":null,"url":null,"abstract":"We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"script\">E</mi></mrow></mrow></math> mapping <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>ρ</mi><mn>1</mn><mrow><mo>⊗</mo><mi>n</mi></mrow></msubsup></math> into <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>ρ</mi><mn>2</mn><mrow><mo>⊗</mo><msub><mi>R</mi><mi>n</mi></msub><mi>n</mi></mrow></msubsup></math> with an error <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>ϵ</mi><mi>n</mi></msub></math> (measured by trace distance) and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>σ</mi><mn>1</mn><mrow><mo>⊗</mo><mi>n</mi></mrow></msubsup></math> into <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mi>σ</mi><mn>2</mn><mrow><mo>⊗</mo><msub><mi>R</mi><mi>n</mi></msub><mi>n</mi></mrow></msubsup></math> exactly, for a large number <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi></math>. We derive second-order asymptotic expressions for the optimal transformation rate <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>R</mi><mi>n</mi></msub></math> in the small-, moderate-, and large-deviation error regimes, as well as the zero-error regime, for an arbitrary pair <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mi>ρ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>σ</mi><mn>1</mn></msub><mo stretchy=\"false\">)</mo></math> of initial states and a commuting pair <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mi>ρ</mi><mn>2</mn></msub><mo>,</mo><msub><mi>σ</mi><mn>2</mn></msub><mo stretchy=\"false\">)</mo></math> of final states. We also prove that for <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>σ</mi><mn>1</mn></msub></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>σ</mi><mn>2</mn></msub></math> given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by finite-size effects. What is more, our result on quantum dichotomies can also be used to obtain, up to second-order asymptotic terms, optimal conversion rates between pure bipartite entangled states under local operations and classical communication.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Dichotomies and Coherent Thermodynamics beyond First-Order Asymptotics\",\"authors\":\"Patryk Lipka-Bartosik, Christopher T. Chubb, Joseph M. Renes, Marco Tomamichel, Kamil Korzekwa\",\"doi\":\"10.1103/prxquantum.5.020335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mrow><mi mathvariant=\\\"script\\\">E</mi></mrow></mrow></math> mapping <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>ρ</mi><mn>1</mn><mrow><mo>⊗</mo><mi>n</mi></mrow></msubsup></math> into <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>ρ</mi><mn>2</mn><mrow><mo>⊗</mo><msub><mi>R</mi><mi>n</mi></msub><mi>n</mi></mrow></msubsup></math> with an error <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>ϵ</mi><mi>n</mi></msub></math> (measured by trace distance) and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>σ</mi><mn>1</mn><mrow><mo>⊗</mo><mi>n</mi></mrow></msubsup></math> into <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mi>σ</mi><mn>2</mn><mrow><mo>⊗</mo><msub><mi>R</mi><mi>n</mi></msub><mi>n</mi></mrow></msubsup></math> exactly, for a large number <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>n</mi></math>. We derive second-order asymptotic expressions for the optimal transformation rate <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>R</mi><mi>n</mi></msub></math> in the small-, moderate-, and large-deviation error regimes, as well as the zero-error regime, for an arbitrary pair <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mi>ρ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>σ</mi><mn>1</mn></msub><mo stretchy=\\\"false\\\">)</mo></math> of initial states and a commuting pair <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mi>ρ</mi><mn>2</mn></msub><mo>,</mo><msub><mi>σ</mi><mn>2</mn></msub><mo stretchy=\\\"false\\\">)</mo></math> of final states. We also prove that for <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>σ</mi><mn>1</mn></msub></math> and <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>σ</mi><mn>2</mn></msub></math> given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by finite-size effects. What is more, our result on quantum dichotomies can also be used to obtain, up to second-order asymptotic terms, optimal conversion rates between pure bipartite entangled states under local operations and classical communication.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.020335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum Dichotomies and Coherent Thermodynamics beyond First-Order Asymptotics
We address the problem of exact and approximate transformation of quantum dichotomies in the asymptotic regime, i.e., the existence of a quantum channel mapping into with an error (measured by trace distance) and into exactly, for a large number . We derive second-order asymptotic expressions for the optimal transformation rate in the small-, moderate-, and large-deviation error regimes, as well as the zero-error regime, for an arbitrary pair of initial states and a commuting pair of final states. We also prove that for and given by thermal Gibbs states, the derived optimal transformation rates in the first three regimes can be attained by thermal operations. This allows us, for the first time, to study the second-order asymptotics of thermodynamic state interconversion with fully general initial states that may have coherence between different energy eigenspaces. Thus, we discuss the optimal performance of thermodynamic protocols with coherent inputs and describe three novel resonance phenomena allowing one to significantly reduce transformation errors induced by finite-size effects. What is more, our result on quantum dichotomies can also be used to obtain, up to second-order asymptotic terms, optimal conversion rates between pure bipartite entangled states under local operations and classical communication.