论准巴拿赫函数空间的性质

Aleš Nekvinda, Dalimil Peša
{"title":"论准巴拿赫函数空间的性质","authors":"Aleš Nekvinda, Dalimil Peša","doi":"10.1007/s12220-024-01673-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper we explore some basic properties of quasi-Banach function spaces which are important in applications. Namely, we show that they possess a generalised version of Riesz–Fischer property, that embeddings between them are always continuous, and that the dilation operator is bounded on them. We also provide a characterisation of separability for quasi-Banach function spaces over the Euclidean space. Furthermore, we extend the classical Riesz–Fischer theorem to the context of quasinormed spaces and, as a consequence, obtain an alternative proof of completeness of quasi-Banach function spaces.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Properties of Quasi-Banach Function Spaces\",\"authors\":\"Aleš Nekvinda, Dalimil Peša\",\"doi\":\"10.1007/s12220-024-01673-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we explore some basic properties of quasi-Banach function spaces which are important in applications. Namely, we show that they possess a generalised version of Riesz–Fischer property, that embeddings between them are always continuous, and that the dilation operator is bounded on them. We also provide a characterisation of separability for quasi-Banach function spaces over the Euclidean space. Furthermore, we extend the classical Riesz–Fischer theorem to the context of quasinormed spaces and, as a consequence, obtain an alternative proof of completeness of quasi-Banach function spaces.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01673-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01673-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了准巴拿赫函数空间的一些基本性质,这些性质在应用中非常重要。也就是说,我们证明了准巴拿赫函数空间具有广义版的里斯兹-费舍尔性质,它们之间的嵌入总是连续的,而且扩张算子在它们上是有界的。我们还提供了欧几里得空间上准巴拿赫函数空间的可分性特征。此外,我们还将经典的里厄斯-费舍尔定理扩展到准规范空间,并由此获得了准巴拿赫函数空间完备性的另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Properties of Quasi-Banach Function Spaces

In this paper we explore some basic properties of quasi-Banach function spaces which are important in applications. Namely, we show that they possess a generalised version of Riesz–Fischer property, that embeddings between them are always continuous, and that the dilation operator is bounded on them. We also provide a characterisation of separability for quasi-Banach function spaces over the Euclidean space. Furthermore, we extend the classical Riesz–Fischer theorem to the context of quasinormed spaces and, as a consequence, obtain an alternative proof of completeness of quasi-Banach function spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信