{"title":"开发半合成皂素免疫刺激剂","authors":"Di Bai, Hyunjung Kim, Pengfei Wang","doi":"10.1007/s00044-024-03227-x","DOIUrl":null,"url":null,"abstract":"<p>Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural <i>momordica</i> saponins (MS) I and II to the deacylated <i>Quillaja Saponaria</i> (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors’ previous work on SAR studies of QS and MS saponins.</p>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of semisynthetic saponin immunostimulants\",\"authors\":\"Di Bai, Hyunjung Kim, Pengfei Wang\",\"doi\":\"10.1007/s00044-024-03227-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural <i>momordica</i> saponins (MS) I and II to the deacylated <i>Quillaja Saponaria</i> (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors’ previous work on SAR studies of QS and MS saponins.</p>\",\"PeriodicalId\":699,\"journal\":{\"name\":\"Medicinal Chemistry Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00044-024-03227-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00044-024-03227-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
许多天然皂苷都具有免疫刺激佐剂活性,但它们也有一些固有的缺点,限制了其临床应用。为了克服这些局限性,人们进行了广泛的结构-活性-关系(SAR)研究。对 QS-21 和相关皂苷的 SAR 研究表明,它们各自的脂肪侧链对于增强强烈的细胞免疫反应至关重要。将 C28 寡糖结构域中水解不稳定的酯侧链替换为同一结构域或 C3 支链三糖结构域中的酰胺侧链,是产生强效半合成皂苷免疫刺激剂的可行方法。鉴于天然莫莫迪卡皂甙(MS)Ⅰ和Ⅱ与脱乙酰基的诃子皂甙(QS)(如 QS-17、QS-18 和 QS-21)极为相似,将酰胺侧链加入更具可持续性的 MS 中,而不是脱乙酰基的 QS 皂甙,从而发现了源自 MS 的半合成免疫刺激佐剂 VSA-1 和 VSA-2。这篇综述主要介绍了作者之前对 QS 和 MS 皂苷进行的 SAR 研究工作。
Development of semisynthetic saponin immunostimulants
Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural momordica saponins (MS) I and II to the deacylated Quillaja Saponaria (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors’ previous work on SAR studies of QS and MS saponins.
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.