{"title":"周-莱夫谢茨动机","authors":"Bruno Kahn","doi":"10.1016/j.indag.2024.04.007","DOIUrl":null,"url":null,"abstract":"We develop Milne’s theory of Lefschetz motives for general adequate equivalence relations and over a not necessarily algebraically closed base field. The corresponding categories turn out to enjoy all properties predicted by standard and less standard conjectures, in a stronger way: algebraic and numerical equivalences agree in this context. We also compute the Tannakian group associated to a Weil cohomology in a different and more conceptual way than Milne’s case-by-case approach.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chow–Lefschetz motives\",\"authors\":\"Bruno Kahn\",\"doi\":\"10.1016/j.indag.2024.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop Milne’s theory of Lefschetz motives for general adequate equivalence relations and over a not necessarily algebraically closed base field. The corresponding categories turn out to enjoy all properties predicted by standard and less standard conjectures, in a stronger way: algebraic and numerical equivalences agree in this context. We also compute the Tannakian group associated to a Weil cohomology in a different and more conceptual way than Milne’s case-by-case approach.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.04.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.04.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We develop Milne’s theory of Lefschetz motives for general adequate equivalence relations and over a not necessarily algebraically closed base field. The corresponding categories turn out to enjoy all properties predicted by standard and less standard conjectures, in a stronger way: algebraic and numerical equivalences agree in this context. We also compute the Tannakian group associated to a Weil cohomology in a different and more conceptual way than Milne’s case-by-case approach.