{"title":"具有协变量测量误差和不可忽略的缺失响应的线性量回归的统计推断","authors":"Xiaowen Liang, Boping Tian","doi":"10.1007/s00184-024-00967-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider quantile regression estimation for linear models with covariate measurement errors and nonignorable missing responses. Firstly, the influence of measurement errors is eliminated through the bias-corrected quantile loss function. To handle the identifiability issue in the nonignorable missing, a nonresponse instrument is used. Then, based on the inverse probability weighting approach, we propose a weighted bias-corrected quantile loss function that can handle both nonignorable missingness and covariate measurement errors. Under certain regularity conditions, we establish the asymptotic properties of the proposed estimators. The finite sample performance of the proposed method is illustrated by Monte Carlo simulations and an empirical data analysis.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"47 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference for linear quantile regression with measurement error in covariates and nonignorable missing responses\",\"authors\":\"Xiaowen Liang, Boping Tian\",\"doi\":\"10.1007/s00184-024-00967-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider quantile regression estimation for linear models with covariate measurement errors and nonignorable missing responses. Firstly, the influence of measurement errors is eliminated through the bias-corrected quantile loss function. To handle the identifiability issue in the nonignorable missing, a nonresponse instrument is used. Then, based on the inverse probability weighting approach, we propose a weighted bias-corrected quantile loss function that can handle both nonignorable missingness and covariate measurement errors. Under certain regularity conditions, we establish the asymptotic properties of the proposed estimators. The finite sample performance of the proposed method is illustrated by Monte Carlo simulations and an empirical data analysis.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00967-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00967-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Statistical inference for linear quantile regression with measurement error in covariates and nonignorable missing responses
In this paper, we consider quantile regression estimation for linear models with covariate measurement errors and nonignorable missing responses. Firstly, the influence of measurement errors is eliminated through the bias-corrected quantile loss function. To handle the identifiability issue in the nonignorable missing, a nonresponse instrument is used. Then, based on the inverse probability weighting approach, we propose a weighted bias-corrected quantile loss function that can handle both nonignorable missingness and covariate measurement errors. Under certain regularity conditions, we establish the asymptotic properties of the proposed estimators. The finite sample performance of the proposed method is illustrated by Monte Carlo simulations and an empirical data analysis.
期刊介绍:
Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.