基于时间和空间增量的二维空间线性抛物线 SPDE 参数估计

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2024-05-18 DOI:10.1007/s00184-024-00969-x
Yozo Tonaki, Yusuke Kaino, Masayuki Uchida
{"title":"基于时间和空间增量的二维空间线性抛物线 SPDE 参数估计","authors":"Yozo Tonaki, Yusuke Kaino, Masayuki Uchida","doi":"10.1007/s00184-024-00969-x","DOIUrl":null,"url":null,"abstract":"<p>We deal with parameter estimation for linear parabolic second-order stochastic partial differential equations in two space dimensions driven by two types of <i>Q</i>-Wiener processes based on high frequency data with respect to time and space. We propose minimum contrast estimators of the coefficient parameters based on temporal and spatial increments, and provide adaptive estimators of the coefficient parameters based on approximate coordinate processes. We also give an example and simulation results of the proposed estimators.</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":"50 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric estimation for linear parabolic SPDEs in two space dimensions based on temporal and spatial increments\",\"authors\":\"Yozo Tonaki, Yusuke Kaino, Masayuki Uchida\",\"doi\":\"10.1007/s00184-024-00969-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We deal with parameter estimation for linear parabolic second-order stochastic partial differential equations in two space dimensions driven by two types of <i>Q</i>-Wiener processes based on high frequency data with respect to time and space. We propose minimum contrast estimators of the coefficient parameters based on temporal and spatial increments, and provide adaptive estimators of the coefficient parameters based on approximate coordinate processes. We also give an example and simulation results of the proposed estimators.</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00969-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00969-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们以时间和空间的高频数据为基础,讨论了两维空间中由两类 Q-Wiener 过程驱动的线性抛物线二阶随机偏微分方程的参数估计。我们提出了基于时间和空间增量的系数参数最小对比度估计器,并提供了基于近似坐标过程的系数参数自适应估计器。我们还给出了一个例子和所提估计器的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Parametric estimation for linear parabolic SPDEs in two space dimensions based on temporal and spatial increments

Parametric estimation for linear parabolic SPDEs in two space dimensions based on temporal and spatial increments

We deal with parameter estimation for linear parabolic second-order stochastic partial differential equations in two space dimensions driven by two types of Q-Wiener processes based on high frequency data with respect to time and space. We propose minimum contrast estimators of the coefficient parameters based on temporal and spatial increments, and provide adaptive estimators of the coefficient parameters based on approximate coordinate processes. We also give an example and simulation results of the proposed estimators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信