Sebastian Bruch, Franco Maria Nardini, Amir Ingber, Edo Liberty
{"title":"连接密集与稀疏最大内积搜索","authors":"Sebastian Bruch, Franco Maria Nardini, Amir Ingber, Edo Liberty","doi":"10.1145/3665324","DOIUrl":null,"url":null,"abstract":"<p>Maximum inner product search (MIPS) over dense and sparse vectors have progressed independently in a bifurcated literature for decades; the latter is better known as top-\\(k\\) retrieval in Information Retrieval. This duality exists because sparse and dense vectors serve different end goals. That is despite the fact that they are manifestations of the same mathematical problem. In this work, we ask if algorithms for dense vectors could be applied effectively to sparse vectors, particularly those that violate the assumptions underlying top-\\(k\\) retrieval methods. We study clustering-based approximate MIPS where vectors are partitioned into clusters and only a fraction of clusters are searched during retrieval. We conduct a comprehensive analysis of dimensionality reduction for sparse vectors, and examine standard and spherical KMeans for partitioning. Our experiments demonstrate that clustering-based retrieval serves as an efficient solution for sparse MIPS. As byproducts, we identify two research opportunities and explore their potential. First, we cast the clustering-based paradigm as dynamic pruning and turn that insight into a novel organization of the inverted index for approximate MIPS over general sparse vectors. Second, we offer a unified regime for MIPS over vectors that have dense and sparse subspaces, that is robust to query distributions.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":"5 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging Dense and Sparse Maximum Inner Product Search\",\"authors\":\"Sebastian Bruch, Franco Maria Nardini, Amir Ingber, Edo Liberty\",\"doi\":\"10.1145/3665324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maximum inner product search (MIPS) over dense and sparse vectors have progressed independently in a bifurcated literature for decades; the latter is better known as top-\\\\(k\\\\) retrieval in Information Retrieval. This duality exists because sparse and dense vectors serve different end goals. That is despite the fact that they are manifestations of the same mathematical problem. In this work, we ask if algorithms for dense vectors could be applied effectively to sparse vectors, particularly those that violate the assumptions underlying top-\\\\(k\\\\) retrieval methods. We study clustering-based approximate MIPS where vectors are partitioned into clusters and only a fraction of clusters are searched during retrieval. We conduct a comprehensive analysis of dimensionality reduction for sparse vectors, and examine standard and spherical KMeans for partitioning. Our experiments demonstrate that clustering-based retrieval serves as an efficient solution for sparse MIPS. As byproducts, we identify two research opportunities and explore their potential. First, we cast the clustering-based paradigm as dynamic pruning and turn that insight into a novel organization of the inverted index for approximate MIPS over general sparse vectors. Second, we offer a unified regime for MIPS over vectors that have dense and sparse subspaces, that is robust to query distributions.</p>\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3665324\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665324","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Bridging Dense and Sparse Maximum Inner Product Search
Maximum inner product search (MIPS) over dense and sparse vectors have progressed independently in a bifurcated literature for decades; the latter is better known as top-\(k\) retrieval in Information Retrieval. This duality exists because sparse and dense vectors serve different end goals. That is despite the fact that they are manifestations of the same mathematical problem. In this work, we ask if algorithms for dense vectors could be applied effectively to sparse vectors, particularly those that violate the assumptions underlying top-\(k\) retrieval methods. We study clustering-based approximate MIPS where vectors are partitioned into clusters and only a fraction of clusters are searched during retrieval. We conduct a comprehensive analysis of dimensionality reduction for sparse vectors, and examine standard and spherical KMeans for partitioning. Our experiments demonstrate that clustering-based retrieval serves as an efficient solution for sparse MIPS. As byproducts, we identify two research opportunities and explore their potential. First, we cast the clustering-based paradigm as dynamic pruning and turn that insight into a novel organization of the inverted index for approximate MIPS over general sparse vectors. Second, we offer a unified regime for MIPS over vectors that have dense and sparse subspaces, that is robust to query distributions.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.