相位整体性是具有两个子种群的仓本模型中令人费解的时间模式的基础

Aladin Crnkić, Vladimir Jaćimović
{"title":"相位整体性是具有两个子种群的仓本模型中令人费解的时间模式的基础","authors":"Aladin Crnkić, Vladimir Jaćimović","doi":"arxiv-2405.09696","DOIUrl":null,"url":null,"abstract":"We present a geometric investigation of curious dynamical behaviors\npreviously reported in Kuramoto models with two sub-populations. Our study\ndemonstrates that chimeras and traveling waves in such models are associated\nwith the birth of geometric phase. Although manifestations of geometric phase\nare frequent in various fields of Physics, this is the first time (to our best\nknowledge) that such a phenomenon is exposed in ensembles of Kuramoto\noscillators or, more broadly, in complex systems.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase holonomy underlies puzzling temporal patterns in Kuramoto models with two sub-populations\",\"authors\":\"Aladin Crnkić, Vladimir Jaćimović\",\"doi\":\"arxiv-2405.09696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a geometric investigation of curious dynamical behaviors\\npreviously reported in Kuramoto models with two sub-populations. Our study\\ndemonstrates that chimeras and traveling waves in such models are associated\\nwith the birth of geometric phase. Although manifestations of geometric phase\\nare frequent in various fields of Physics, this is the first time (to our best\\nknowledge) that such a phenomenon is exposed in ensembles of Kuramoto\\noscillators or, more broadly, in complex systems.\",\"PeriodicalId\":501305,\"journal\":{\"name\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.09696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.09696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从几何角度研究了此前在具有两个子群的仓本模型中报道的奇异动力学行为。我们的研究证明,这类模型中的嵌合体和行波与几何相位的产生有关。虽然几何相位的表现在物理学的各个领域都很常见,但(据我们所知)这是第一次在仓本振子集合或更广义的复杂系统中暴露出这种现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase holonomy underlies puzzling temporal patterns in Kuramoto models with two sub-populations
We present a geometric investigation of curious dynamical behaviors previously reported in Kuramoto models with two sub-populations. Our study demonstrates that chimeras and traveling waves in such models are associated with the birth of geometric phase. Although manifestations of geometric phase are frequent in various fields of Physics, this is the first time (to our best knowledge) that such a phenomenon is exposed in ensembles of Kuramoto oscillators or, more broadly, in complex systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信