地铁站深层开挖多级挡土结构的观测特征

IF 1.7 4区 工程技术 Q4 TRANSPORTATION
Xiangyang Cui, Zhaoping Li, Huafei He, Teng Liu, Jiahao Wang
{"title":"地铁站深层开挖多级挡土结构的观测特征","authors":"Xiangyang Cui, Zhaoping Li, Huafei He, Teng Liu, Jiahao Wang","doi":"10.1007/s40864-023-00208-y","DOIUrl":null,"url":null,"abstract":"<p>Traditional support structures cannot meet the complex conditions of different excavation depths and areas in underground transportation hubs. On the basis of fully considering the spatial position relationship of foundation pit groups, this article proposes a multilevel retaining system that meets the requirements of multilevel foundation pit excavation. The evolution law of the support structure during the excavation process of the inner pit was explored using on-site monitoring and numerical simulation methods. The results indicate that the excavation of the inner pit reduces the passive earth pressure, and the deformation of the outer support structure can be effectively suppressed by setting a retaining structure or a bottom slab in the bench zone. The excavation of the inner pit causes significant vertical deformation of the support structure adjacent to the foundation pit, while the impact on the structure far away from the foundation pit is relatively small. According to the contact force chain and soil pressure between the two rows of support structure, the soil in this area is divided into a “relaxation zone” and a “compression zone.” The evolution mechanism of earth pressure in the case of mutual-effect failure between two rows of piles is revealed. This paper addresses the deformation properties of multilevel support structures as well as the mechanism of earth pressure evolution between structures.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observed Characterization of Multi‑level Retaining Structure for Deep Excavation of Subway Station\",\"authors\":\"Xiangyang Cui, Zhaoping Li, Huafei He, Teng Liu, Jiahao Wang\",\"doi\":\"10.1007/s40864-023-00208-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional support structures cannot meet the complex conditions of different excavation depths and areas in underground transportation hubs. On the basis of fully considering the spatial position relationship of foundation pit groups, this article proposes a multilevel retaining system that meets the requirements of multilevel foundation pit excavation. The evolution law of the support structure during the excavation process of the inner pit was explored using on-site monitoring and numerical simulation methods. The results indicate that the excavation of the inner pit reduces the passive earth pressure, and the deformation of the outer support structure can be effectively suppressed by setting a retaining structure or a bottom slab in the bench zone. The excavation of the inner pit causes significant vertical deformation of the support structure adjacent to the foundation pit, while the impact on the structure far away from the foundation pit is relatively small. According to the contact force chain and soil pressure between the two rows of support structure, the soil in this area is divided into a “relaxation zone” and a “compression zone.” The evolution mechanism of earth pressure in the case of mutual-effect failure between two rows of piles is revealed. This paper addresses the deformation properties of multilevel support structures as well as the mechanism of earth pressure evolution between structures.</p>\",\"PeriodicalId\":44861,\"journal\":{\"name\":\"Urban Rail Transit\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Rail Transit\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40864-023-00208-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40864-023-00208-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

传统的支护结构无法满足地下交通枢纽不同开挖深度和面积的复杂条件。本文在充分考虑基坑群空间位置关系的基础上,提出了满足多层基坑开挖要求的多级支护体系。采用现场监测和数值模拟方法,探讨了基坑内部开挖过程中支护结构的演变规律。结果表明,内基坑开挖降低了被动土压力,通过在台阶区设置挡土结构或底板,可有效抑制外支撑结构的变形。内基坑开挖会对基坑附近的支撑结构造成较大的竖向变形,而对远离基坑的结构影响相对较小。根据两排支护结构之间的接触力链和土压力,该区域的土体被划分为 "松弛区 "和 "压缩区"。揭示了两排桩间互效破坏情况下土压力的演变机理。本文探讨了多层支撑结构的变形特性以及结构间土压的演变机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observed Characterization of Multi‑level Retaining Structure for Deep Excavation of Subway Station

Observed Characterization of Multi‑level Retaining Structure for Deep Excavation of Subway Station

Traditional support structures cannot meet the complex conditions of different excavation depths and areas in underground transportation hubs. On the basis of fully considering the spatial position relationship of foundation pit groups, this article proposes a multilevel retaining system that meets the requirements of multilevel foundation pit excavation. The evolution law of the support structure during the excavation process of the inner pit was explored using on-site monitoring and numerical simulation methods. The results indicate that the excavation of the inner pit reduces the passive earth pressure, and the deformation of the outer support structure can be effectively suppressed by setting a retaining structure or a bottom slab in the bench zone. The excavation of the inner pit causes significant vertical deformation of the support structure adjacent to the foundation pit, while the impact on the structure far away from the foundation pit is relatively small. According to the contact force chain and soil pressure between the two rows of support structure, the soil in this area is divided into a “relaxation zone” and a “compression zone.” The evolution mechanism of earth pressure in the case of mutual-effect failure between two rows of piles is revealed. This paper addresses the deformation properties of multilevel support structures as well as the mechanism of earth pressure evolution between structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Urban Rail Transit
Urban Rail Transit Multiple-
CiteScore
3.10
自引率
6.70%
发文量
20
审稿时长
5 weeks
期刊介绍: Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field. Specific topics cover: Column I: Urban Rail Transportation Operation and Management • urban rail transit flow theory, operation, planning, control and management • traffic and transport safety • traffic polices and economics • urban rail management • traffic information management • urban rail scheduling • train scheduling and management • strategies of ticket price • traffic information engineering & control • intelligent transportation system (ITS) and information technology • economics, finance, business & industry • train operation, control • transport Industries • transportation engineering Column II: Urban Rail Transportation Design and Planning • urban rail planning • pedestrian studies • sustainable transport engineering • rail electrification • rail signaling and communication • Intelligent & Automated Transport System Technology ? • rolling stock design theory and structural reliability • urban rail transit electrification and automation technologies • transport Industries • transportation engineering Column III: Civil Engineering • civil engineering technologies • maintenance of rail infrastructure • transportation infrastructure systems • roads, bridges, tunnels, and underground engineering ? • subgrade and pavement maintenance and performance Column IV: Equipments and Systems • mechanical-electronic technologies • manufacturing engineering • inspection for trains and rail • vehicle-track coupling system dynamics, simulation and control • superconductivity and levitation technology • magnetic suspension and evacuated tube transport • railway technology & engineering • Railway Transport Industries • transport & vehicle engineering Column V: other topics of interest • modern tram • interdisciplinary transportation research • environmental impacts such as vibration, noise and pollution Article types: • Papers. Reports of original research work. • Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems. • Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication. • Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信