{"title":"非稳态 SQM/IST 对应和线上 CPT/PT 不变的成对哈密顿子","authors":"V P Berezovoj, A J Nurmagambetov","doi":"10.1093/ptep/ptae074","DOIUrl":null,"url":null,"abstract":"We fill some of existed gaps in the correspondence between Supersymmetric Quantum Mechanics and the Inverse Scattering Transform by extending the consideration to the case of paired stationary and non-stationary Hamiltonians. We formulate the corresponding to the case Goursat problem and explicitly construct the kernel of the non-local Inverse Scattering Transform, which solves it. As a result, we find the way of constructing non-hermitian Hamiltonians from the initially hermitian ones, that leads, in the case of real-valued spectra of both potentials, to pairing of ${\\cal CPT/PT}$-invariant Hamiltonians. The relevance of our proposal to Quantum Optics and optical waveguides technology, as well as to non-linear dynamics and Black Hole Physics is briefly discussed.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-stationary SQM/IST correspondence and CPT/PT-invariant paired hamiltonians on the line\",\"authors\":\"V P Berezovoj, A J Nurmagambetov\",\"doi\":\"10.1093/ptep/ptae074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We fill some of existed gaps in the correspondence between Supersymmetric Quantum Mechanics and the Inverse Scattering Transform by extending the consideration to the case of paired stationary and non-stationary Hamiltonians. We formulate the corresponding to the case Goursat problem and explicitly construct the kernel of the non-local Inverse Scattering Transform, which solves it. As a result, we find the way of constructing non-hermitian Hamiltonians from the initially hermitian ones, that leads, in the case of real-valued spectra of both potentials, to pairing of ${\\\\cal CPT/PT}$-invariant Hamiltonians. The relevance of our proposal to Quantum Optics and optical waveguides technology, as well as to non-linear dynamics and Black Hole Physics is briefly discussed.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae074\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae074","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Non-stationary SQM/IST correspondence and CPT/PT-invariant paired hamiltonians on the line
We fill some of existed gaps in the correspondence between Supersymmetric Quantum Mechanics and the Inverse Scattering Transform by extending the consideration to the case of paired stationary and non-stationary Hamiltonians. We formulate the corresponding to the case Goursat problem and explicitly construct the kernel of the non-local Inverse Scattering Transform, which solves it. As a result, we find the way of constructing non-hermitian Hamiltonians from the initially hermitian ones, that leads, in the case of real-valued spectra of both potentials, to pairing of ${\cal CPT/PT}$-invariant Hamiltonians. The relevance of our proposal to Quantum Optics and optical waveguides technology, as well as to non-linear dynamics and Black Hole Physics is briefly discussed.