利玛窦收缩器的瓦瑟斯坦距离

Pub Date : 2024-05-15 DOI:10.1093/imrn/rnae099
Franciele Conrado, Detang Zhou
{"title":"利玛窦收缩器的瓦瑟斯坦距离","authors":"Franciele Conrado, Detang Zhou","doi":"10.1093/imrn/rnae099","DOIUrl":null,"url":null,"abstract":"Let $(M^{n},g,f)$ be a Ricci shrinker such that $\\text{Ric}_{f}=\\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\\pi )^{-\\frac{n}{2}}e^{-f}dv_{g}$ is a probability measure. Given a point $p\\in M$, we consider two probability measures defined in the tangent space $T_{p}M$, namely the Gaussian measure $\\gamma $ and the measure $\\overline{\\nu }$ induced by the exponential map of $M$ to $p$. In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\\overline{\\nu }$ and $\\gamma $, and which also elucidates the rigidity implications resulting from this estimate.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Wasserstein Distance for Ricci Shrinkers\",\"authors\":\"Franciele Conrado, Detang Zhou\",\"doi\":\"10.1093/imrn/rnae099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(M^{n},g,f)$ be a Ricci shrinker such that $\\\\text{Ric}_{f}=\\\\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\\\\pi )^{-\\\\frac{n}{2}}e^{-f}dv_{g}$ is a probability measure. Given a point $p\\\\in M$, we consider two probability measures defined in the tangent space $T_{p}M$, namely the Gaussian measure $\\\\gamma $ and the measure $\\\\overline{\\\\nu }$ induced by the exponential map of $M$ to $p$. In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\\\\overline{\\\\nu }$ and $\\\\gamma $, and which also elucidates the rigidity implications resulting from this estimate.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $(M^{n},g,f)$ 是一个里奇收缩器,使得 $\text{Ric}_{f}=\frac{1}{2}g$ 并且由加权体积元素 $(4\pi )^{-\frac{n}{2}}e^{-f}dv_{g}$ 引起的度量是一个概率度量。给定 M$ 中的一个点 $p/,我们考虑切空间 $T_{p}M$ 中定义的两个概率度量,即高斯度量 $\gamma $ 和由 $M$ 到 $p$ 的指数映射诱导的度量 $overline/{nu}$。在本文中,我们证明了一个结果,它提供了量 $\overline{\nu }$ 与 $\gamma $ 之间关于欧几里得度量 $g_{0}$ 的瓦瑟斯坦距离的上估计值,并阐明了该估计值所产生的刚度影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Wasserstein Distance for Ricci Shrinkers
Let $(M^{n},g,f)$ be a Ricci shrinker such that $\text{Ric}_{f}=\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\pi )^{-\frac{n}{2}}e^{-f}dv_{g}$ is a probability measure. Given a point $p\in M$, we consider two probability measures defined in the tangent space $T_{p}M$, namely the Gaussian measure $\gamma $ and the measure $\overline{\nu }$ induced by the exponential map of $M$ to $p$. In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\overline{\nu }$ and $\gamma $, and which also elucidates the rigidity implications resulting from this estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信