{"title":"一类中性微分方程 Runge-Kutta 方法的延迟稳定性","authors":"Zheng Wang, Yuhao Cong","doi":"10.1007/s11075-024-01846-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a class of Runge-Kutta methods for solving neutral delay differential equations (NDDEs) is proposed, which was first introduced by Bassenne et al. (J. Comput. Phys. <b>424</b>, 109847, 2021) for ODEs. In the study, the explicit Runge-Kutta method is multiplied by an operator, which is a Time-Accurate and highly-Stable Explicit operator (TASE-RK), resulting in higher stability than explicit RK. Recently, the multi-parameter TASE-W method was extended by González-Pinto et al. (Appl. Numer. Math. <b>188</b>, 129–145, 2023). We generalized TASE-RK and TASE-W to NDDEs for the first time. Then, by applying the argument principle, sufficient conditions for delay-dependent stability of TASE-RK and TASE-W combined with Lagrange interpolation for NDDEs are investigated. Finally, numerical examples are carried out to verify the theoretical results.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"65 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delay-dependent stability of a class of Runge-Kutta methods for neutral differential equations\",\"authors\":\"Zheng Wang, Yuhao Cong\",\"doi\":\"10.1007/s11075-024-01846-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a class of Runge-Kutta methods for solving neutral delay differential equations (NDDEs) is proposed, which was first introduced by Bassenne et al. (J. Comput. Phys. <b>424</b>, 109847, 2021) for ODEs. In the study, the explicit Runge-Kutta method is multiplied by an operator, which is a Time-Accurate and highly-Stable Explicit operator (TASE-RK), resulting in higher stability than explicit RK. Recently, the multi-parameter TASE-W method was extended by González-Pinto et al. (Appl. Numer. Math. <b>188</b>, 129–145, 2023). We generalized TASE-RK and TASE-W to NDDEs for the first time. Then, by applying the argument principle, sufficient conditions for delay-dependent stability of TASE-RK and TASE-W combined with Lagrange interpolation for NDDEs are investigated. Finally, numerical examples are carried out to verify the theoretical results.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01846-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01846-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Delay-dependent stability of a class of Runge-Kutta methods for neutral differential equations
In this paper, a class of Runge-Kutta methods for solving neutral delay differential equations (NDDEs) is proposed, which was first introduced by Bassenne et al. (J. Comput. Phys. 424, 109847, 2021) for ODEs. In the study, the explicit Runge-Kutta method is multiplied by an operator, which is a Time-Accurate and highly-Stable Explicit operator (TASE-RK), resulting in higher stability than explicit RK. Recently, the multi-parameter TASE-W method was extended by González-Pinto et al. (Appl. Numer. Math. 188, 129–145, 2023). We generalized TASE-RK and TASE-W to NDDEs for the first time. Then, by applying the argument principle, sufficient conditions for delay-dependent stability of TASE-RK and TASE-W combined with Lagrange interpolation for NDDEs are investigated. Finally, numerical examples are carried out to verify the theoretical results.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.