论格网方程的轨距等价关系下的拉克斯表征和米乌拉型变换

Sergei Igonin
{"title":"论格网方程的轨距等价关系下的拉克斯表征和米乌拉型变换","authors":"Sergei Igonin","doi":"arxiv-2405.08579","DOIUrl":null,"url":null,"abstract":"We study matrix Lax representations (MLRs) for differential-difference\n(lattice) equations. For a given equation, two MLRs are said to be gauge\nequivalent if one of them can be obtained from the other by means of a matrix\ngauge transformation. We present results on the following questions: 1. When is a given MLR gauge equivalent to an MLR suitable for constructing\ndifferential-difference Miura-type transformations by the method of [G.\nBerkeley, S. Igonin, J. Phys. A (2016), arXiv:1512.09123]? 2. When is a given MLR gauge equivalent to a trivial MLR? Furthermore, we present new examples of integrable differential-difference\nequations with Miura-type transformations.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"253 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Lax representations under the gauge equivalence relation and Miura-type transformations for lattice equations\",\"authors\":\"Sergei Igonin\",\"doi\":\"arxiv-2405.08579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study matrix Lax representations (MLRs) for differential-difference\\n(lattice) equations. For a given equation, two MLRs are said to be gauge\\nequivalent if one of them can be obtained from the other by means of a matrix\\ngauge transformation. We present results on the following questions: 1. When is a given MLR gauge equivalent to an MLR suitable for constructing\\ndifferential-difference Miura-type transformations by the method of [G.\\nBerkeley, S. Igonin, J. Phys. A (2016), arXiv:1512.09123]? 2. When is a given MLR gauge equivalent to a trivial MLR? Furthermore, we present new examples of integrable differential-difference\\nequations with Miura-type transformations.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"253 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.08579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.08579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究微分-差分(网格)方程的矩阵拉克斯表示(MLR)。对于一个给定方程,如果两个 MLR 中的一个可以通过矩阵量规变换从另一个得到,那么这两个 MLR 可以说是量规等价的。我们将介绍有关以下问题的结果:1.给定的 MLR 何时与适合通过[G.Berkeley, S. Igonin, J. Phys. A (2016), arXiv:1512.09123] 方法构造微分差分米乌拉型变换的 MLR 轨距等价?2.给定的 MLR 量规何时等价于微不足道的 MLR?此外,我们还提出了具有米乌拉型变换的可积分微分-差分方程的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Lax representations under the gauge equivalence relation and Miura-type transformations for lattice equations
We study matrix Lax representations (MLRs) for differential-difference (lattice) equations. For a given equation, two MLRs are said to be gauge equivalent if one of them can be obtained from the other by means of a matrix gauge transformation. We present results on the following questions: 1. When is a given MLR gauge equivalent to an MLR suitable for constructing differential-difference Miura-type transformations by the method of [G. Berkeley, S. Igonin, J. Phys. A (2016), arXiv:1512.09123]? 2. When is a given MLR gauge equivalent to a trivial MLR? Furthermore, we present new examples of integrable differential-difference equations with Miura-type transformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信