论同质对称康托集合与其平移的结合

IF 1 3区 数学 Q1 MATHEMATICS
Derong Kong, Wenxia Li, Zhiqiang Wang, Yuanyuan Yao, Yunxiu Zhang
{"title":"论同质对称康托集合与其平移的结合","authors":"Derong Kong, Wenxia Li, Zhiqiang Wang, Yuanyuan Yao, Yunxiu Zhang","doi":"10.1007/s00209-024-03499-4","DOIUrl":null,"url":null,"abstract":"<p>Fix a positive integer <i>N</i> and a real number <span>\\(0&lt; \\beta &lt; 1/(N+1)\\)</span>. Let <span>\\(\\Gamma \\)</span> be the homogeneous symmetric Cantor set generated by the IFS </p><span>$$\\begin{aligned} \\Bigg \\{ \\phi _i(x)=\\beta x + i \\frac{1-\\beta }{N}: i=0,1,\\ldots , N \\Bigg \\}. \\end{aligned}$$</span><p>For <span>\\(m\\in \\mathbb {Z}_+\\)</span> we show that there exist infinitely many translation vectors <span>\\({\\textbf{t}}=(t_0,t_1,\\ldots , t_m)\\)</span> with <span>\\(0=t_0&lt;t_1&lt;\\cdots &lt;t_m\\)</span> such that the union <span>\\(\\bigcup _{j=0}^m(\\Gamma +t_j)\\)</span> is a self-similar set. Furthermore, for <span>\\(0&lt; \\beta &lt; 1/(2N+1)\\)</span>, we give a finite algorithm to determine whether the union <span>\\(\\bigcup _{j=0}^m(\\Gamma +t_j)\\)</span> is a self-similar set for any given vector <span>\\({\\textbf{t}}\\)</span>. Our characterization relies on determining whether some related directed graph has no cycles, or whether some related adjacency matrix is nilpotent.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"54 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the union of homogeneous symmetric Cantor set with its translations\",\"authors\":\"Derong Kong, Wenxia Li, Zhiqiang Wang, Yuanyuan Yao, Yunxiu Zhang\",\"doi\":\"10.1007/s00209-024-03499-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fix a positive integer <i>N</i> and a real number <span>\\\\(0&lt; \\\\beta &lt; 1/(N+1)\\\\)</span>. Let <span>\\\\(\\\\Gamma \\\\)</span> be the homogeneous symmetric Cantor set generated by the IFS </p><span>$$\\\\begin{aligned} \\\\Bigg \\\\{ \\\\phi _i(x)=\\\\beta x + i \\\\frac{1-\\\\beta }{N}: i=0,1,\\\\ldots , N \\\\Bigg \\\\}. \\\\end{aligned}$$</span><p>For <span>\\\\(m\\\\in \\\\mathbb {Z}_+\\\\)</span> we show that there exist infinitely many translation vectors <span>\\\\({\\\\textbf{t}}=(t_0,t_1,\\\\ldots , t_m)\\\\)</span> with <span>\\\\(0=t_0&lt;t_1&lt;\\\\cdots &lt;t_m\\\\)</span> such that the union <span>\\\\(\\\\bigcup _{j=0}^m(\\\\Gamma +t_j)\\\\)</span> is a self-similar set. Furthermore, for <span>\\\\(0&lt; \\\\beta &lt; 1/(2N+1)\\\\)</span>, we give a finite algorithm to determine whether the union <span>\\\\(\\\\bigcup _{j=0}^m(\\\\Gamma +t_j)\\\\)</span> is a self-similar set for any given vector <span>\\\\({\\\\textbf{t}}\\\\)</span>. Our characterization relies on determining whether some related directed graph has no cycles, or whether some related adjacency matrix is nilpotent.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03499-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03499-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

固定一个正整数 N 和一个实数(0< \beta < 1/(N+1))。让 \(\Gamma \) 是由 IFS $$\begin{aligned} 生成的同构对称康托集合\phi _i(x)=\beta x + i \frac{1-\beta }{N}: i=0,1,\ldots , N \Bigg \}。\end{aligned}$$For \(m\in \mathbb {Z}_+\) we show that there exist infinitely many translation vectors \({\textbf{t}}=(t_0,t_1,\ldots , t_m)\) with \(0=t_0<;t_1<cdots<t_m\ ),这样的联合 \(\bigcup _{j=0}^m(\Gamma +t_j)\) 是一个自相似集合。此外,对于\(0< \beta < 1/(2N+1)\),我们给出了一种有限的算法来确定对于任何给定的向量\({\textbf{t}}\),union \(\bigcup _{j=0}^m(\Gamma +t_j)\)是否是一个自相似集合。我们的表征依赖于确定某个相关的有向图是否没有循环,或者某个相关的邻接矩阵是否为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the union of homogeneous symmetric Cantor set with its translations

On the union of homogeneous symmetric Cantor set with its translations

Fix a positive integer N and a real number \(0< \beta < 1/(N+1)\). Let \(\Gamma \) be the homogeneous symmetric Cantor set generated by the IFS

$$\begin{aligned} \Bigg \{ \phi _i(x)=\beta x + i \frac{1-\beta }{N}: i=0,1,\ldots , N \Bigg \}. \end{aligned}$$

For \(m\in \mathbb {Z}_+\) we show that there exist infinitely many translation vectors \({\textbf{t}}=(t_0,t_1,\ldots , t_m)\) with \(0=t_0<t_1<\cdots <t_m\) such that the union \(\bigcup _{j=0}^m(\Gamma +t_j)\) is a self-similar set. Furthermore, for \(0< \beta < 1/(2N+1)\), we give a finite algorithm to determine whether the union \(\bigcup _{j=0}^m(\Gamma +t_j)\) is a self-similar set for any given vector \({\textbf{t}}\). Our characterization relies on determining whether some related directed graph has no cycles, or whether some related adjacency matrix is nilpotent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信