求助PDF
{"title":"(p,q)-全态映射空间的紧密性","authors":"Antonio Jiménez-Vargas, David Ruiz-Casternado","doi":"10.1515/math-2023-0183","DOIUrl":null,"url":null,"abstract":"Based on the concept of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operator for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>p\\in \\left[1,\\infty ]</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>q\\in \\left[1,{p}^{* }]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we introduce and study the notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact holomorphic mapping between Banach spaces. We prove that the space formed by such mappings is a surjective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> <m:mi>q</m:mi> <m:mo>∕</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>+</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>pq/\\left(p+q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Banach bounded-holomorphic ideal that can be generated by composition with the ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operators. In addition, we study Mujica’s linearization of such mappings, its relation with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∕</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\left({u}^{* }{v}^{* }+t{v}^{* }+t{u}^{* })/t{u}^{* }{v}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Banach bounded-holomorphic composition ideal of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(t,u,v)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nuclear holomorphic mappings for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>t,u,v\\in \\left[1,\\infty ]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, its holomorphic transposition via the injective hull of the ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,{q}^{* },1)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nuclear operators, the Möbius invariance of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_011.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact holomorphic mappings on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_012.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"double-struck\">D</m:mi> </m:math> <jats:tex-math>{\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and its full compact factorization through a compact holomorphic mapping, a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0183_eq_013.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operator, and a compact operator.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(p, q)-Compactness in spaces of holomorphic mappings\",\"authors\":\"Antonio Jiménez-Vargas, David Ruiz-Casternado\",\"doi\":\"10.1515/math-2023-0183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the concept of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operator for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>p\\\\in \\\\left[1,\\\\infty ]</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>q</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>q\\\\in \\\\left[1,{p}^{* }]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we introduce and study the notion of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact holomorphic mapping between Banach spaces. We prove that the space formed by such mappings is a surjective <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>p</m:mi> <m:mi>q</m:mi> <m:mo>∕</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>+</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>pq/\\\\left(p+q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Banach bounded-holomorphic ideal that can be generated by composition with the ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operators. In addition, we study Mujica’s linearization of such mappings, its relation with the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∕</m:mo> <m:mi>t</m:mi> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\\\left({u}^{* }{v}^{* }+t{v}^{* }+t{u}^{* })/t{u}^{* }{v}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Banach bounded-holomorphic composition ideal of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_008.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(t,u,v)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nuclear holomorphic mappings for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_009.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>t,u,v\\\\in \\\\left[1,\\\\infty ]</jats:tex-math> </jats:alternatives> </jats:inline-formula>, its holomorphic transposition via the injective hull of the ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_010.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(p,{q}^{* },1)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-nuclear operators, the Möbius invariance of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_011.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact holomorphic mappings on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_012.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"double-struck\\\">D</m:mi> </m:math> <jats:tex-math>{\\\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and its full compact factorization through a compact holomorphic mapping, a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0183_eq_013.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(p,q)</jats:tex-math> </jats:alternatives> </jats:inline-formula>-compact operator, and a compact operator.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0183\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0183","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
基于对于 p∈ [ 1 , ∞ ] p\in \left[1,\infty ] 和 q∈ [ 1 , p * ] q\in \left[1,{p}^{* }] 的 ( p , q ) \left(p,q) -compact 算子的概念,我们引入并研究了巴拿赫空间之间的 ( p , q ) \left(p,q) -compact 全态映射的概念。我们证明,由这种映射形成的空间是一个投射 p q ∕ ( p + q ) pq/\left(p+q) -Banach 有界全形理想,它可以通过与 ( p , q ) \left(p,q) -compact 算子的理想组成而生成。此外,我们还研究了穆希卡对此类映射的线性化、它与 ( u * v * + t v * + t u * ) ∕ t u * v * \left({u}^{* }{v}^{* }+t{v}^{* }+t{u}^{* })/t{u}^{* }{v}^{* } 的关系。 -巴拿赫有界全形构成理想的 ( t , u , v ) \left(t,u,v)-核全形映射为 t , u , v∈ [ 1 , ∞ ] t,u,v\in \left[1,\infty ] 、通过( p , q * , 1 ) \left(p,{q}^{* },1)-核算子的理想的注入全域、( p , q ) \left(p,q)-D{mathbb{D}}上紧凑全态映射的莫比乌斯不变性、以及通过(p, q ) \left(p,q)-D{mathbb{D}}的全紧凑因子化来实现其全态转置 及其通过紧凑全态映射、( p , q ) \left(p,q)-紧凑算子和紧凑算子的全紧凑因式分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(p, q)-Compactness in spaces of holomorphic mappings
Based on the concept of ( p , q ) \left(p,q) -compact operator for p ∈ [ 1 , ∞ ] p\in \left[1,\infty ] and q ∈ [ 1 , p * ] q\in \left[1,{p}^{* }] , we introduce and study the notion of ( p , q ) \left(p,q) -compact holomorphic mapping between Banach spaces. We prove that the space formed by such mappings is a surjective p q ∕ ( p + q ) pq/\left(p+q) -Banach bounded-holomorphic ideal that can be generated by composition with the ideal of ( p , q ) \left(p,q) -compact operators. In addition, we study Mujica’s linearization of such mappings, its relation with the ( u * v * + t v * + t u * ) ∕ t u * v * \left({u}^{* }{v}^{* }+t{v}^{* }+t{u}^{* })/t{u}^{* }{v}^{* } -Banach bounded-holomorphic composition ideal of the ( t , u , v ) \left(t,u,v) -nuclear holomorphic mappings for t , u , v ∈ [ 1 , ∞ ] t,u,v\in \left[1,\infty ] , its holomorphic transposition via the injective hull of the ideal of ( p , q * , 1 ) \left(p,{q}^{* },1) -nuclear operators, the Möbius invariance of ( p , q ) \left(p,q) -compact holomorphic mappings on D {\mathbb{D}} , and its full compact factorization through a compact holomorphic mapping, a ( p , q ) \left(p,q) -compact operator, and a compact operator.