关于j{mathscr{j}}-诺特环

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Khaled Alhazmy, Fuad Ali Ahmed Almahdi, Najib Mahdou, El Houssaine Oubouhou
{"title":"关于j{mathscr{j}}-诺特环","authors":"Khaled Alhazmy, Fuad Ali Ahmed Almahdi, Najib Mahdou, El Houssaine Oubouhou","doi":"10.1515/math-2024-0014","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a commutative ring with identity and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> an ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula>. An ideal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>I</m:mi> </m:math> <jats:tex-math>I</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> is said to be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>I</m:mi> <m:mspace width=\"0.33em\"/> <m:mo>⊈</m:mo> <m:mspace width=\"0.33em\"/> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>I\\hspace{0.33em} \\nsubseteq \\hspace{0.33em}{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We define <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> to be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_011.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian ring if each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_012.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_013.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> is finitely generated. In this work, we study some properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_014.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian rings. More precisely, we investigate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_015.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian rings via the Cohen-type theorem, the flat extension, decomposable ring, the trivial extension ring, the amalgamated duplication, the polynomial ring extension, and the power series ring extension.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About j{\\\\mathscr{j}}-Noetherian rings\",\"authors\":\"Khaled Alhazmy, Fuad Ali Ahmed Almahdi, Najib Mahdou, El Houssaine Oubouhou\",\"doi\":\"10.1515/math-2024-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a commutative ring with identity and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> an ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula>. An ideal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>I</m:mi> </m:math> <jats:tex-math>I</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> is said to be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_008.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_009.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>I</m:mi> <m:mspace width=\\\"0.33em\\\"/> <m:mo>⊈</m:mo> <m:mspace width=\\\"0.33em\\\"/> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>I\\\\hspace{0.33em} \\\\nsubseteq \\\\hspace{0.33em}{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We define <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_010.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> to be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_011.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian ring if each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_012.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_013.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> is finitely generated. In this work, we study some properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_014.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian rings. More precisely, we investigate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_015.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian rings via the Cohen-type theorem, the flat extension, decomposable ring, the trivial extension ring, the amalgamated duplication, the polynomial ring extension, and the power series ring extension.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0014\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设 R R 是一个具有同一性的交换环,而 j {\mathscr{j}} 是 R R 的一个理想。如果 R R 的理想 I I ⊈ j I\hspace{0}} 是一个 j {\mathscr{j}} 的理想,那么这个理想就是 R R 的理想 I I 。 -理想,如果 I ⊈ j I\hspace{0.33em}\nsubseteq \hspace{0.33em}{\mathscr{j}} .我们定义 R R 是一个 j {\mathscr{j}} 。 -如果每个 j {\mathscr{j} 都是 R R 的ideal,那么 R R 就是一个 j {\mathscr{j}} 的诺特环。 -的ideal 都是有限生成的。在这项工作中,我们将研究 j {\mathscr{j}} -诺特环的一些性质。 -诺特环的一些性质。更准确地说,我们通过共振来研究 j {\mathscr{j}} -诺特环。 -Noetherian 环的科恩型定理、平延伸、可分解环、三维延伸环、合并重复、多项式环延伸和幂级数环延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About j{\mathscr{j}}-Noetherian rings
Let R R be a commutative ring with identity and j {\mathscr{j}} an ideal of R R . An ideal I I of R R is said to be a j {\mathscr{j}} -ideal if I j I\hspace{0.33em} \nsubseteq \hspace{0.33em}{\mathscr{j}} . We define R R to be a j {\mathscr{j}} -Noetherian ring if each j {\mathscr{j}} -ideal of R R is finitely generated. In this work, we study some properties of j {\mathscr{j}} -Noetherian rings. More precisely, we investigate j {\mathscr{j}} -Noetherian rings via the Cohen-type theorem, the flat extension, decomposable ring, the trivial extension ring, the amalgamated duplication, the polynomial ring extension, and the power series ring extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信