Khaled Alhazmy, Fuad Ali Ahmed Almahdi, Najib Mahdou, El Houssaine Oubouhou
{"title":"关于j{mathscr{j}}-诺特环","authors":"Khaled Alhazmy, Fuad Ali Ahmed Almahdi, Najib Mahdou, El Houssaine Oubouhou","doi":"10.1515/math-2024-0014","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a commutative ring with identity and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> an ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula>. An ideal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>I</m:mi> </m:math> <jats:tex-math>I</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> is said to be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_008.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_009.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>I</m:mi> <m:mspace width=\"0.33em\"/> <m:mo>⊈</m:mo> <m:mspace width=\"0.33em\"/> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>I\\hspace{0.33em} \\nsubseteq \\hspace{0.33em}{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We define <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_010.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> to be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_011.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian ring if each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_012.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_013.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> is finitely generated. In this work, we study some properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_014.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian rings. More precisely, we investigate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0014_eq_015.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">j</m:mi> </m:math> <jats:tex-math>{\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian rings via the Cohen-type theorem, the flat extension, decomposable ring, the trivial extension ring, the amalgamated duplication, the polynomial ring extension, and the power series ring extension.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About j{\\\\mathscr{j}}-Noetherian rings\",\"authors\":\"Khaled Alhazmy, Fuad Ali Ahmed Almahdi, Najib Mahdou, El Houssaine Oubouhou\",\"doi\":\"10.1515/math-2024-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a commutative ring with identity and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> an ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula>. An ideal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>I</m:mi> </m:math> <jats:tex-math>I</jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> is said to be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_008.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_009.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>I</m:mi> <m:mspace width=\\\"0.33em\\\"/> <m:mo>⊈</m:mo> <m:mspace width=\\\"0.33em\\\"/> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>I\\\\hspace{0.33em} \\\\nsubseteq \\\\hspace{0.33em}{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We define <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_010.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> to be a <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_011.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian ring if each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_012.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-ideal of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_013.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> is finitely generated. In this work, we study some properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_014.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian rings. More precisely, we investigate <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0014_eq_015.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">j</m:mi> </m:math> <jats:tex-math>{\\\\mathscr{j}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Noetherian rings via the Cohen-type theorem, the flat extension, decomposable ring, the trivial extension ring, the amalgamated duplication, the polynomial ring extension, and the power series ring extension.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0014\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
设 R R 是一个具有同一性的交换环,而 j {\mathscr{j}} 是 R R 的一个理想。如果 R R 的理想 I I ⊈ j I\hspace{0}} 是一个 j {\mathscr{j}} 的理想,那么这个理想就是 R R 的理想 I I 。 -理想,如果 I ⊈ j I\hspace{0.33em}\nsubseteq \hspace{0.33em}{\mathscr{j}} .我们定义 R R 是一个 j {\mathscr{j}} 。 -如果每个 j {\mathscr{j} 都是 R R 的ideal,那么 R R 就是一个 j {\mathscr{j}} 的诺特环。 -的ideal 都是有限生成的。在这项工作中,我们将研究 j {\mathscr{j}} -诺特环的一些性质。 -诺特环的一些性质。更准确地说,我们通过共振来研究 j {\mathscr{j}} -诺特环。 -Noetherian 环的科恩型定理、平延伸、可分解环、三维延伸环、合并重复、多项式环延伸和幂级数环延伸。
Let RR be a commutative ring with identity and j{\mathscr{j}} an ideal of RR. An ideal II of RR is said to be a j{\mathscr{j}}-ideal if I⊈jI\hspace{0.33em} \nsubseteq \hspace{0.33em}{\mathscr{j}}. We define RR to be a j{\mathscr{j}}-Noetherian ring if each j{\mathscr{j}}-ideal of RR is finitely generated. In this work, we study some properties of j{\mathscr{j}}-Noetherian rings. More precisely, we investigate j{\mathscr{j}}-Noetherian rings via the Cohen-type theorem, the flat extension, decomposable ring, the trivial extension ring, the amalgamated duplication, the polynomial ring extension, and the power series ring extension.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.