通过人工智能工具检测巨核细胞结构

S. I. Jabbar, A. Aladi
{"title":"通过人工智能工具检测巨核细胞结构","authors":"S. I. Jabbar, A. Aladi","doi":"10.29194/njes.26040337","DOIUrl":null,"url":null,"abstract":"Recent research has focused on analysing megakaryocyte images to extract the information needed to track the progression of nervous system diseases. Segmentation is a fundamental step in describing and analysing the core contents of megakaryocytes, including the cytoplasm and nucleus. In this study, 45 megakaryocyte images were obtained. A new segmentation image technique was proposed, called the updating fuzzy c-means technique, through the intelligent selection of the centres of each cluster to separate cell components. The first step of this technique (fuzzification) was based on a knowledge analysis of the local parameters (entropy, contrast and standard deviation) that had a substantial influence on the grey-level distribution between the cytoplasm and nucleus. The second important step was the construction of fuzzy rules in terms of the variation in these local parameters to control the intelligent pick-out or update the centroid of each cluster and obtain a successful separation of the cytoplasm and nucleus. The final step was defuzzification to obtain the output images. The results revealed the superiority of the proposed method over recent technique. The accuracy of the segmented nucleus was greater than 7.46%; in the case of the cytoplasm, the accuracy was higher at 18%. These results indicated that this technique may be applied on other biomedical images.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Megakaryocyte Cell Structure Through Artificial Intelligence Tools\",\"authors\":\"S. I. Jabbar, A. Aladi\",\"doi\":\"10.29194/njes.26040337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has focused on analysing megakaryocyte images to extract the information needed to track the progression of nervous system diseases. Segmentation is a fundamental step in describing and analysing the core contents of megakaryocytes, including the cytoplasm and nucleus. In this study, 45 megakaryocyte images were obtained. A new segmentation image technique was proposed, called the updating fuzzy c-means technique, through the intelligent selection of the centres of each cluster to separate cell components. The first step of this technique (fuzzification) was based on a knowledge analysis of the local parameters (entropy, contrast and standard deviation) that had a substantial influence on the grey-level distribution between the cytoplasm and nucleus. The second important step was the construction of fuzzy rules in terms of the variation in these local parameters to control the intelligent pick-out or update the centroid of each cluster and obtain a successful separation of the cytoplasm and nucleus. The final step was defuzzification to obtain the output images. The results revealed the superiority of the proposed method over recent technique. The accuracy of the segmented nucleus was greater than 7.46%; in the case of the cytoplasm, the accuracy was higher at 18%. These results indicated that this technique may be applied on other biomedical images.\",\"PeriodicalId\":7470,\"journal\":{\"name\":\"Al-Nahrain Journal for Engineering Sciences\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Nahrain Journal for Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29194/njes.26040337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29194/njes.26040337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近期研究的重点是分析巨核细胞图像,以提取跟踪神经系统疾病进展所需的信息。分割是描述和分析巨核细胞核心内容(包括细胞质和细胞核)的基本步骤。本研究获得了 45 幅巨核细胞图像。通过智能选择每个聚类的中心来分离细胞成分,提出了一种新的图像分割技术,称为更新模糊 c-means 技术。该技术的第一步(模糊化)基于对局部参数(熵、对比度和标准偏差)的知识分析,这些参数对细胞质和细胞核之间的灰度分布有重大影响。第二个重要步骤是根据这些局部参数的变化构建模糊规则,以控制智能剔除或更新每个聚类的中心点,从而成功分离细胞质和细胞核。最后一步是去模糊化,以获得输出图像。结果表明,所提出的方法优于最近的技术。分割细胞核的准确率高于 7.46%;而分割细胞质的准确率则高达 18%。这些结果表明,该技术可应用于其他生物医学图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Megakaryocyte Cell Structure Through Artificial Intelligence Tools
Recent research has focused on analysing megakaryocyte images to extract the information needed to track the progression of nervous system diseases. Segmentation is a fundamental step in describing and analysing the core contents of megakaryocytes, including the cytoplasm and nucleus. In this study, 45 megakaryocyte images were obtained. A new segmentation image technique was proposed, called the updating fuzzy c-means technique, through the intelligent selection of the centres of each cluster to separate cell components. The first step of this technique (fuzzification) was based on a knowledge analysis of the local parameters (entropy, contrast and standard deviation) that had a substantial influence on the grey-level distribution between the cytoplasm and nucleus. The second important step was the construction of fuzzy rules in terms of the variation in these local parameters to control the intelligent pick-out or update the centroid of each cluster and obtain a successful separation of the cytoplasm and nucleus. The final step was defuzzification to obtain the output images. The results revealed the superiority of the proposed method over recent technique. The accuracy of the segmented nucleus was greater than 7.46%; in the case of the cytoplasm, the accuracy was higher at 18%. These results indicated that this technique may be applied on other biomedical images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信