GPU 加速时域有限差分模拟电磁波与磁性等离子体相互作用的新方案

IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Radio Science Pub Date : 2024-03-30 DOI:10.1029/2023RS007862
Shimin He;Moran Liu;Ting Feng;Yiyun Wu;Xiang Wang;Chen Zhou;Ting Lan;Haiyin Qing
{"title":"GPU 加速时域有限差分模拟电磁波与磁性等离子体相互作用的新方案","authors":"Shimin He;Moran Liu;Ting Feng;Yiyun Wu;Xiang Wang;Chen Zhou;Ting Lan;Haiyin Qing","doi":"10.1029/2023RS007862","DOIUrl":null,"url":null,"abstract":"Based on graphical processing unit acceleration, a new method of finite-difference time-domain scheme is proposed to simulate the interaction between electromagnetic waves and magnetized plasma in two-dimensional conditions. In this study, transversely electric and transversely magnetic are computed in time to avoid matrix operations involving Lorentz equations of motion. Compared to Young's method, the new method reduces addition and multiplication by about 63% and 66%, respectively. The simulation results of ionospheric wave propagation show that the new method agrees well with Young's method and the calculation speed is improved significantly.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 5","pages":"1-16"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel scheme for GPU-accelerated finite-difference time-domain simulation of electromagnetic wave interaction with magnetic plasma\",\"authors\":\"Shimin He;Moran Liu;Ting Feng;Yiyun Wu;Xiang Wang;Chen Zhou;Ting Lan;Haiyin Qing\",\"doi\":\"10.1029/2023RS007862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on graphical processing unit acceleration, a new method of finite-difference time-domain scheme is proposed to simulate the interaction between electromagnetic waves and magnetized plasma in two-dimensional conditions. In this study, transversely electric and transversely magnetic are computed in time to avoid matrix operations involving Lorentz equations of motion. Compared to Young's method, the new method reduces addition and multiplication by about 63% and 66%, respectively. The simulation results of ionospheric wave propagation show that the new method agrees well with Young's method and the calculation speed is improved significantly.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 5\",\"pages\":\"1-16\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10542688/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10542688/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

基于图形处理单元加速,提出了一种新的有限差分时域方案方法,用于模拟二维条件下电磁波与磁化等离子体之间的相互作用。在这项研究中,横向电场和横向磁场是及时计算的,以避免涉及洛伦兹运动方程的矩阵运算。与杨氏方法相比,新方法的加法和乘法运算分别减少了约 63% 和 66%。电离层波传播的模拟结果表明,新方法与杨氏方法非常吻合,而且计算速度显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel scheme for GPU-accelerated finite-difference time-domain simulation of electromagnetic wave interaction with magnetic plasma
Based on graphical processing unit acceleration, a new method of finite-difference time-domain scheme is proposed to simulate the interaction between electromagnetic waves and magnetized plasma in two-dimensional conditions. In this study, transversely electric and transversely magnetic are computed in time to avoid matrix operations involving Lorentz equations of motion. Compared to Young's method, the new method reduces addition and multiplication by about 63% and 66%, respectively. The simulation results of ionospheric wave propagation show that the new method agrees well with Young's method and the calculation speed is improved significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信