基于对二甲苯-C 的柔性有机薄膜晶体管及其使用 SU-8 钝化技术提高的可靠性

Ah-Hyun Hong, Yu Jung Park, J. Seo, Yoon Kim, Dong-Wook Park
{"title":"基于对二甲苯-C 的柔性有机薄膜晶体管及其使用 SU-8 钝化技术提高的可靠性","authors":"Ah-Hyun Hong, Yu Jung Park, J. Seo, Yoon Kim, Dong-Wook Park","doi":"10.1116/5.0197032","DOIUrl":null,"url":null,"abstract":"Flexible and biocompatible organic thin-film transistors (OTFTs) can be well-suited for biological applications due to their compatibility with biomaterials. In this study, flexible OTFTs were fabricated with a Parylene-C substrate and gate dielectric, a material known for its flexibility and biocompatibility. We used poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] as organic channel material. To ensure the longevity and protection of the channel, SU-8, known for its biocompatibility and transparency, effectively safeguarded the OTFT and ensured its sustained operation. Flexible OTFTs were affixed to a curved fixture, referred to as a “curved condition.” The device parameters at −20 V of VD in the curved condition shows an Ion/off ratio of 3.5 × 104, threshold voltage (VTH) of −0.42 V, and mobility of 0.003 cm2/V s. The Parylene-C-based OTFT with SU-8 passivation demonstrated reliability by maintaining performance under curved conditions for 40 days. The results show that the proposed device is suitable for flexible electronics and sensor applications.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"101 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parylene-C-based flexible organic thin-film transistors and their reliability improvement using SU-8 passivation\",\"authors\":\"Ah-Hyun Hong, Yu Jung Park, J. Seo, Yoon Kim, Dong-Wook Park\",\"doi\":\"10.1116/5.0197032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible and biocompatible organic thin-film transistors (OTFTs) can be well-suited for biological applications due to their compatibility with biomaterials. In this study, flexible OTFTs were fabricated with a Parylene-C substrate and gate dielectric, a material known for its flexibility and biocompatibility. We used poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] as organic channel material. To ensure the longevity and protection of the channel, SU-8, known for its biocompatibility and transparency, effectively safeguarded the OTFT and ensured its sustained operation. Flexible OTFTs were affixed to a curved fixture, referred to as a “curved condition.” The device parameters at −20 V of VD in the curved condition shows an Ion/off ratio of 3.5 × 104, threshold voltage (VTH) of −0.42 V, and mobility of 0.003 cm2/V s. The Parylene-C-based OTFT with SU-8 passivation demonstrated reliability by maintaining performance under curved conditions for 40 days. The results show that the proposed device is suitable for flexible electronics and sensor applications.\",\"PeriodicalId\":282302,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology B\",\"volume\":\"101 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/5.0197032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0197032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

柔性和生物相容性有机薄膜晶体管(OTFT)因其与生物材料的相容性而非常适合生物应用。在这项研究中,我们使用聚对二甲苯-C(Parylene-C)衬底和栅电介质制造了柔性 OTFT,这种材料以其柔性和生物相容性而著称。我们使用聚[2,5-双(3-十四烷基噻吩-2-基)噻吩并[3,2-b]噻吩]作为有机通道材料。为确保通道的寿命和保护,以生物相容性和透明度著称的 SU-8 有效地保护了 OTFT,并确保其持续运行。柔性 OTFT 被固定在弧形夹具上,称为 "弧形条件"。在曲面条件下,-20 V VD 的器件参数显示离子/关断比为 3.5 × 104,阈值电压 (VTH) 为 -0.42 V,迁移率为 0.003 cm2/V s。带有 SU-8 钝化层的基于二甲苯-C 的 OTFT 在弯曲条件下保持性能达 40 天,证明了其可靠性。结果表明,所提出的器件适用于柔性电子和传感器应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parylene-C-based flexible organic thin-film transistors and their reliability improvement using SU-8 passivation
Flexible and biocompatible organic thin-film transistors (OTFTs) can be well-suited for biological applications due to their compatibility with biomaterials. In this study, flexible OTFTs were fabricated with a Parylene-C substrate and gate dielectric, a material known for its flexibility and biocompatibility. We used poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] as organic channel material. To ensure the longevity and protection of the channel, SU-8, known for its biocompatibility and transparency, effectively safeguarded the OTFT and ensured its sustained operation. Flexible OTFTs were affixed to a curved fixture, referred to as a “curved condition.” The device parameters at −20 V of VD in the curved condition shows an Ion/off ratio of 3.5 × 104, threshold voltage (VTH) of −0.42 V, and mobility of 0.003 cm2/V s. The Parylene-C-based OTFT with SU-8 passivation demonstrated reliability by maintaining performance under curved conditions for 40 days. The results show that the proposed device is suitable for flexible electronics and sensor applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信