用于大规模跨界集水区流量预测的迁移学习框架:数据稀缺流域的敏感性分析和适用性

IF 4.3 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Kai Ma, Chaopeng Shen, Ziyue Xu, Daming He
{"title":"用于大规模跨界集水区流量预测的迁移学习框架:数据稀缺流域的敏感性分析和适用性","authors":"Kai Ma, Chaopeng Shen, Ziyue Xu, Daming He","doi":"10.1007/s11442-024-2235-x","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":15857,"journal":{"name":"Journal of Geographical Sciences","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer learning framework for streamflow prediction in large-scale transboundary catchments: Sensitivity analysis and applicability in data-scarce basins\",\"authors\":\"Kai Ma, Chaopeng Shen, Ziyue Xu, Daming He\",\"doi\":\"10.1007/s11442-024-2235-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":15857,\"journal\":{\"name\":\"Journal of Geographical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geographical Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11442-024-2235-x\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geographical Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11442-024-2235-x","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer learning framework for streamflow prediction in large-scale transboundary catchments: Sensitivity analysis and applicability in data-scarce basins
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geographical Sciences
Journal of Geographical Sciences 地学-自然地理
CiteScore
0.80
自引率
6.10%
发文量
121
审稿时长
3 months
期刊介绍: Co-sponsored by the Geographical Society of China and the Institute of Geographic Sciences and Natural Resources Research, CAS, Journal of Geographical Sciences aims to strengthen academic exchange on geography research between China and other countries, and to offer a forum for exchange between geographers in China and abroad. Journal of Geographical Sciences is a natural science journal, publishing articles related to physical process and spatial patterns at the earth''s surface, physio-geographical elements and their interaction, global change and its regional response, characters and management of natural resources, landscape ecology and environmental construction, remote sensing, geographic information system and their applications in geographical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信