错位双曲增强拉格朗日算法的约束条件

Q3 Mathematics
Lennin Mallma Ramirez , Nelson Maculan , Adilson Elias Xavier , Vinicius Layter Xavier
{"title":"错位双曲增强拉格朗日算法的约束条件","authors":"Lennin Mallma Ramirez ,&nbsp;Nelson Maculan ,&nbsp;Adilson Elias Xavier ,&nbsp;Vinicius Layter Xavier","doi":"10.1016/j.rico.2024.100429","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study an augmented Lagrangian-type algorithm called the Dislocation Hyperbolic Augmented Lagrangian Algorithm (DHALA), which solves an inequality nonconvex optimization problem. We show that the sequence generated by DHALA converges to a Karush–Kuhn–Tucker (KKT) point under the Mangasarian–Fromovitz constraint qualification. The contribution of our work is to consider a constraint qualification into this algorithm. Finally, we present some computational illustrations to demonstrate the performance our algorithm works.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"15 ","pages":"Article 100429"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000596/pdfft?md5=6b2765e03f40da9b2d8677e849370378&pid=1-s2.0-S2666720724000596-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A constraint qualification for the dislocation hyperbolic augmented Lagrangian algorithm\",\"authors\":\"Lennin Mallma Ramirez ,&nbsp;Nelson Maculan ,&nbsp;Adilson Elias Xavier ,&nbsp;Vinicius Layter Xavier\",\"doi\":\"10.1016/j.rico.2024.100429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study an augmented Lagrangian-type algorithm called the Dislocation Hyperbolic Augmented Lagrangian Algorithm (DHALA), which solves an inequality nonconvex optimization problem. We show that the sequence generated by DHALA converges to a Karush–Kuhn–Tucker (KKT) point under the Mangasarian–Fromovitz constraint qualification. The contribution of our work is to consider a constraint qualification into this algorithm. Finally, we present some computational illustrations to demonstrate the performance our algorithm works.</p></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"15 \",\"pages\":\"Article 100429\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000596/pdfft?md5=6b2765e03f40da9b2d8677e849370378&pid=1-s2.0-S2666720724000596-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种称为 "位错双曲增强拉格朗日算法(DHALA)"的增强拉格朗日类型算法,该算法用于解决不等式非凸优化问题。我们证明,在 Mangasarian-Fromovitz 约束条件下,DHALA 生成的序列会收敛到 Karush-Kuhn-Tucker (KKT) 点。我们工作的贡献在于将约束条件考虑到了这一算法中。最后,我们给出了一些计算示例,以展示我们算法的工作性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A constraint qualification for the dislocation hyperbolic augmented Lagrangian algorithm

In this paper, we study an augmented Lagrangian-type algorithm called the Dislocation Hyperbolic Augmented Lagrangian Algorithm (DHALA), which solves an inequality nonconvex optimization problem. We show that the sequence generated by DHALA converges to a Karush–Kuhn–Tucker (KKT) point under the Mangasarian–Fromovitz constraint qualification. The contribution of our work is to consider a constraint qualification into this algorithm. Finally, we present some computational illustrations to demonstrate the performance our algorithm works.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信