{"title":"治疗结核病和阿尔茨海默病的 IoMT Tsukamoto Type-2 模糊专家系统","authors":"M.K. Sharma , Nitesh Dhiman , Ajendra Sharma , Tarun Kumar","doi":"10.1016/j.ceh.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate disease monitoring is an extremely time-consuming task for medical experts and technocrats involved, requiring technical support for diagnostic systems. To overcome this situation, we developed an Internet of Medical Things (IoMT) based on Tsukamoto Type 2 Fuzzy Inference System (TT2FIS) that can easily handle diagnostic and predictive aspects in the medical field. In the proposed system, we developed a Tsukamoto type 2 fuzzy inference system that takes the patient’s symptoms as input factors and the medical device as the output factor of the result. The aim of this work is to demonstrate the usefulness of type 2 fuzzy sets in Tuberculosis and Alzheimer’s disease diagnostic system. Numerical calculations are also performed to illustrate the applicability of the proposed method. A validation of the proposed derivation of the proposed IoMT model is also discussed in the results and conclusions section.</p></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"7 ","pages":"Pages 77-91"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588914124000078/pdfft?md5=01ce48d625ccd9df58e5d5a4a9fdbd41&pid=1-s2.0-S2588914124000078-main.pdf","citationCount":"0","resultStr":"{\"title\":\"IoMT Tsukamoto Type-2 fuzzy expert system for tuberculosis and Alzheimer’s disease\",\"authors\":\"M.K. Sharma , Nitesh Dhiman , Ajendra Sharma , Tarun Kumar\",\"doi\":\"10.1016/j.ceh.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate disease monitoring is an extremely time-consuming task for medical experts and technocrats involved, requiring technical support for diagnostic systems. To overcome this situation, we developed an Internet of Medical Things (IoMT) based on Tsukamoto Type 2 Fuzzy Inference System (TT2FIS) that can easily handle diagnostic and predictive aspects in the medical field. In the proposed system, we developed a Tsukamoto type 2 fuzzy inference system that takes the patient’s symptoms as input factors and the medical device as the output factor of the result. The aim of this work is to demonstrate the usefulness of type 2 fuzzy sets in Tuberculosis and Alzheimer’s disease diagnostic system. Numerical calculations are also performed to illustrate the applicability of the proposed method. A validation of the proposed derivation of the proposed IoMT model is also discussed in the results and conclusions section.</p></div>\",\"PeriodicalId\":100268,\"journal\":{\"name\":\"Clinical eHealth\",\"volume\":\"7 \",\"pages\":\"Pages 77-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588914124000078/pdfft?md5=01ce48d625ccd9df58e5d5a4a9fdbd41&pid=1-s2.0-S2588914124000078-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical eHealth\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588914124000078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914124000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
IoMT Tsukamoto Type-2 fuzzy expert system for tuberculosis and Alzheimer’s disease
Accurate disease monitoring is an extremely time-consuming task for medical experts and technocrats involved, requiring technical support for diagnostic systems. To overcome this situation, we developed an Internet of Medical Things (IoMT) based on Tsukamoto Type 2 Fuzzy Inference System (TT2FIS) that can easily handle diagnostic and predictive aspects in the medical field. In the proposed system, we developed a Tsukamoto type 2 fuzzy inference system that takes the patient’s symptoms as input factors and the medical device as the output factor of the result. The aim of this work is to demonstrate the usefulness of type 2 fuzzy sets in Tuberculosis and Alzheimer’s disease diagnostic system. Numerical calculations are also performed to illustrate the applicability of the proposed method. A validation of the proposed derivation of the proposed IoMT model is also discussed in the results and conclusions section.