Qi Li , Gaozhan Liu , Qianqian Zhang , Lidong Han , Wei Chen , Rui Li , Jinbo Xiong
{"title":"利用完全隐藏的策略为云计算物联网提供高效、细粒度的访问控制","authors":"Qi Li , Gaozhan Liu , Qianqian Zhang , Lidong Han , Wei Chen , Rui Li , Jinbo Xiong","doi":"10.1016/j.dcan.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><div>Ciphertext-Policy Attribute-Based Encryption (CP-ABE) enables fine-grained access control on ciphertexts, making it a promising approach for managing data stored in the cloud-enabled Internet of Things. But existing schemes often suffer from privacy breaches due to explicit attachment of access policies or partial hiding of critical attribute content. Additionally, resource-constrained IoT devices, especially those adopting wireless communication, frequently encounter affordability issues regarding decryption costs. In this paper, we propose an efficient and fine-grained access control scheme with fully hidden policies (named FHAC). FHAC conceals all attributes in the policy and utilizes bloom filters to efficiently locate them. A test phase before decryption is applied to assist authorized users in finding matches between their attributes and the access policy. Dictionary attacks are thwarted by providing unauthorized users with invalid values. The heavy computational overhead of both the test phase and most of the decryption phase is outsourced to two cloud servers. Additionally, users can verify the correctness of multiple outsourced decryption results simultaneously. Security analysis and performance comparisons demonstrate FHAC's effectiveness in protecting policy privacy and achieving efficient decryption.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 2","pages":"Pages 473-481"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and fine-grained access control with fully-hidden policies for cloud-enabled IoT\",\"authors\":\"Qi Li , Gaozhan Liu , Qianqian Zhang , Lidong Han , Wei Chen , Rui Li , Jinbo Xiong\",\"doi\":\"10.1016/j.dcan.2024.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ciphertext-Policy Attribute-Based Encryption (CP-ABE) enables fine-grained access control on ciphertexts, making it a promising approach for managing data stored in the cloud-enabled Internet of Things. But existing schemes often suffer from privacy breaches due to explicit attachment of access policies or partial hiding of critical attribute content. Additionally, resource-constrained IoT devices, especially those adopting wireless communication, frequently encounter affordability issues regarding decryption costs. In this paper, we propose an efficient and fine-grained access control scheme with fully hidden policies (named FHAC). FHAC conceals all attributes in the policy and utilizes bloom filters to efficiently locate them. A test phase before decryption is applied to assist authorized users in finding matches between their attributes and the access policy. Dictionary attacks are thwarted by providing unauthorized users with invalid values. The heavy computational overhead of both the test phase and most of the decryption phase is outsourced to two cloud servers. Additionally, users can verify the correctness of multiple outsourced decryption results simultaneously. Security analysis and performance comparisons demonstrate FHAC's effectiveness in protecting policy privacy and achieving efficient decryption.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 2\",\"pages\":\"Pages 473-481\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824000658\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000658","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Efficient and fine-grained access control with fully-hidden policies for cloud-enabled IoT
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) enables fine-grained access control on ciphertexts, making it a promising approach for managing data stored in the cloud-enabled Internet of Things. But existing schemes often suffer from privacy breaches due to explicit attachment of access policies or partial hiding of critical attribute content. Additionally, resource-constrained IoT devices, especially those adopting wireless communication, frequently encounter affordability issues regarding decryption costs. In this paper, we propose an efficient and fine-grained access control scheme with fully hidden policies (named FHAC). FHAC conceals all attributes in the policy and utilizes bloom filters to efficiently locate them. A test phase before decryption is applied to assist authorized users in finding matches between their attributes and the access policy. Dictionary attacks are thwarted by providing unauthorized users with invalid values. The heavy computational overhead of both the test phase and most of the decryption phase is outsourced to two cloud servers. Additionally, users can verify the correctness of multiple outsourced decryption results simultaneously. Security analysis and performance comparisons demonstrate FHAC's effectiveness in protecting policy privacy and achieving efficient decryption.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.