威斯康星州苏必利尔湖沿岸海岸快速变化的激光雷达测量结果(2009-2019 年)

IF 2.4 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
C.J. Roland, L.K. Zoet
{"title":"威斯康星州苏必利尔湖沿岸海岸快速变化的激光雷达测量结果(2009-2019 年)","authors":"C.J. Roland,&nbsp;L.K. Zoet","doi":"10.1016/j.jglr.2024.102366","DOIUrl":null,"url":null,"abstract":"<div><div>Coastal landscapes are highly dynamic, and comprehensive measurements of morphological change are important for improved coastal management. Past assessments of morphological change along Wisconsin’s Lake Superior coast were limited in either their spatial coverage or their ability to incorporate three-dimensional changes due to their reliance on 2D transect-based or plan-form measurements. Here, we quantified erosion and deposition for 74 km of Wisconsin’s Lake Superior coastline using airborne LiDAR data collected in 2009 and 2019, spanning a transition from below-average to near-record water elevations. We used open-source methods to generate new 1-m resolution DEM’s and semi-automatically delineated bluff toes and crests. The study reach experienced 3.03 ± 0.59 <span><math><mo>×</mo></math></span> 10<sup>6</sup> m<sup>3</sup> of net erosion, corresponding to a normalized mean erosion rate of 3.9 m<sup>3</sup> yr<sup>−1</sup> per m of coastline. The mean bluff toe retreated 6.8 ± 5.6 m over this time period (0.7 ± 0.4 m yr<sup>−1</sup>), while the mean bluff crest retreated 2.9 ± 5.7 m over this time period (0.3 ± 0.4 m yr<sup>−1</sup>), leading to widespread bluff steepening. Coastal erosion rates exhibited a strong lithological dependence, with sandier bluffs losing 7.0 ± 4.9 m<sup>3</sup> yr<sup>−1</sup> per m of coastline while more clay-rich bluffs eroded at a rate of 3.2 ± 2.3 m<sup>3</sup> yr<sup>−1</sup> per m of coastline. Aggradational reaches were limited to Wisconsin Point. Our findings indicate that Wisconsin’s Lake Superior coast is eroding at rates similar to other soft coastal cliff systems and there is substantial spatial variability in erosion rates. As of 2019, bluff slopes had increased and bluff crest retreat is expected to continue to achieve stable slope angles.</div></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"51 1","pages":"Article 102366"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LiDAR-derived measurements of rapid coastal change along Wisconsin’s Lake Superior coast (2009–2019)\",\"authors\":\"C.J. Roland,&nbsp;L.K. Zoet\",\"doi\":\"10.1016/j.jglr.2024.102366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Coastal landscapes are highly dynamic, and comprehensive measurements of morphological change are important for improved coastal management. Past assessments of morphological change along Wisconsin’s Lake Superior coast were limited in either their spatial coverage or their ability to incorporate three-dimensional changes due to their reliance on 2D transect-based or plan-form measurements. Here, we quantified erosion and deposition for 74 km of Wisconsin’s Lake Superior coastline using airborne LiDAR data collected in 2009 and 2019, spanning a transition from below-average to near-record water elevations. We used open-source methods to generate new 1-m resolution DEM’s and semi-automatically delineated bluff toes and crests. The study reach experienced 3.03 ± 0.59 <span><math><mo>×</mo></math></span> 10<sup>6</sup> m<sup>3</sup> of net erosion, corresponding to a normalized mean erosion rate of 3.9 m<sup>3</sup> yr<sup>−1</sup> per m of coastline. The mean bluff toe retreated 6.8 ± 5.6 m over this time period (0.7 ± 0.4 m yr<sup>−1</sup>), while the mean bluff crest retreated 2.9 ± 5.7 m over this time period (0.3 ± 0.4 m yr<sup>−1</sup>), leading to widespread bluff steepening. Coastal erosion rates exhibited a strong lithological dependence, with sandier bluffs losing 7.0 ± 4.9 m<sup>3</sup> yr<sup>−1</sup> per m of coastline while more clay-rich bluffs eroded at a rate of 3.2 ± 2.3 m<sup>3</sup> yr<sup>−1</sup> per m of coastline. Aggradational reaches were limited to Wisconsin Point. Our findings indicate that Wisconsin’s Lake Superior coast is eroding at rates similar to other soft coastal cliff systems and there is substantial spatial variability in erosion rates. As of 2019, bluff slopes had increased and bluff crest retreat is expected to continue to achieve stable slope angles.</div></div>\",\"PeriodicalId\":54818,\"journal\":{\"name\":\"Journal of Great Lakes Research\",\"volume\":\"51 1\",\"pages\":\"Article 102366\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Great Lakes Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S038013302400114X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S038013302400114X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
LiDAR-derived measurements of rapid coastal change along Wisconsin’s Lake Superior coast (2009–2019)
Coastal landscapes are highly dynamic, and comprehensive measurements of morphological change are important for improved coastal management. Past assessments of morphological change along Wisconsin’s Lake Superior coast were limited in either their spatial coverage or their ability to incorporate three-dimensional changes due to their reliance on 2D transect-based or plan-form measurements. Here, we quantified erosion and deposition for 74 km of Wisconsin’s Lake Superior coastline using airborne LiDAR data collected in 2009 and 2019, spanning a transition from below-average to near-record water elevations. We used open-source methods to generate new 1-m resolution DEM’s and semi-automatically delineated bluff toes and crests. The study reach experienced 3.03 ± 0.59 × 106 m3 of net erosion, corresponding to a normalized mean erosion rate of 3.9 m3 yr−1 per m of coastline. The mean bluff toe retreated 6.8 ± 5.6 m over this time period (0.7 ± 0.4 m yr−1), while the mean bluff crest retreated 2.9 ± 5.7 m over this time period (0.3 ± 0.4 m yr−1), leading to widespread bluff steepening. Coastal erosion rates exhibited a strong lithological dependence, with sandier bluffs losing 7.0 ± 4.9 m3 yr−1 per m of coastline while more clay-rich bluffs eroded at a rate of 3.2 ± 2.3 m3 yr−1 per m of coastline. Aggradational reaches were limited to Wisconsin Point. Our findings indicate that Wisconsin’s Lake Superior coast is eroding at rates similar to other soft coastal cliff systems and there is substantial spatial variability in erosion rates. As of 2019, bluff slopes had increased and bluff crest retreat is expected to continue to achieve stable slope angles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Great Lakes Research
Journal of Great Lakes Research 生物-海洋与淡水生物学
CiteScore
5.10
自引率
13.60%
发文量
178
审稿时长
6 months
期刊介绍: Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信