采用混合运动算法进行无人飞行器路径规划以避开障碍物

Q4 Engineering
Venkatasivarambabu Pamarthi, Richa Agrawal
{"title":"采用混合运动算法进行无人飞行器路径规划以避开障碍物","authors":"Venkatasivarambabu Pamarthi,&nbsp;Richa Agrawal","doi":"10.1016/j.measen.2024.101195","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicles (UAVs) are gaining prominence in autonomously navigating diverse terrains, requiring the capability to establish collision-free trajectories and adapt them on-the-fly to changing environments. This study's central contribution lies in devising an optimized motion planning framework tailored for UAVs operating amidst dynamic scenarios. This framework comprises two integral components: an optimized motion planner and a dynamic scenario generator. To enhance trajectory optimization, the optimized motion planner enhances the Rapidly-exploring Random Tree (RRTX) method with a Covariant Hamiltonian Optimization for Motion Planning (CHOMP) algorithm-based optimizer. Addressing the challenges posed by dynamic environments characterized by abrupt appearance, disappearance, or shifting of constraints, the motion planner adeptly identifies environmental changes and computes collision-free paths during UAV navigation. The dynamic scenario generator integrates a UAV simulator and barrier information, effectively emulating UAV obstacles and intended flight patterns within a Unity-based simulation environment. The simulator employed is Flight Mare, a versatile quadrotor simulator that employs Unity's graphics engine and a physics engine for dynamic simulations. Through comprehensive simulations, the proposed approach is validated, demonstrating its efficacy in enabling UAVs to autonomously navigate dynamic environments while avoiding obstacles successfully.</div></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"36 ","pages":"Article 101195"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unmanned aerial vehicle path planning with hybrid motion algorithm for obstacle avoidance\",\"authors\":\"Venkatasivarambabu Pamarthi,&nbsp;Richa Agrawal\",\"doi\":\"10.1016/j.measen.2024.101195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unmanned aerial vehicles (UAVs) are gaining prominence in autonomously navigating diverse terrains, requiring the capability to establish collision-free trajectories and adapt them on-the-fly to changing environments. This study's central contribution lies in devising an optimized motion planning framework tailored for UAVs operating amidst dynamic scenarios. This framework comprises two integral components: an optimized motion planner and a dynamic scenario generator. To enhance trajectory optimization, the optimized motion planner enhances the Rapidly-exploring Random Tree (RRTX) method with a Covariant Hamiltonian Optimization for Motion Planning (CHOMP) algorithm-based optimizer. Addressing the challenges posed by dynamic environments characterized by abrupt appearance, disappearance, or shifting of constraints, the motion planner adeptly identifies environmental changes and computes collision-free paths during UAV navigation. The dynamic scenario generator integrates a UAV simulator and barrier information, effectively emulating UAV obstacles and intended flight patterns within a Unity-based simulation environment. The simulator employed is Flight Mare, a versatile quadrotor simulator that employs Unity's graphics engine and a physics engine for dynamic simulations. Through comprehensive simulations, the proposed approach is validated, demonstrating its efficacy in enabling UAVs to autonomously navigate dynamic environments while avoiding obstacles successfully.</div></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"36 \",\"pages\":\"Article 101195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424001715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424001715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

无人驾驶飞行器(UAV)在自主导航各种地形方面的作用日益突出,这就要求其具备建立无碰撞轨迹的能力,并能根据不断变化的环境对轨迹进行实时调整。本研究的核心贡献在于为在动态场景中运行的无人机量身定制了一个优化运动规划框架。该框架包括两个组成部分:优化运动规划器和动态场景生成器。为了加强轨迹优化,优化运动规划器采用基于共变哈密顿优化运动规划算法(CHOMP)的优化器,增强了快速探索随机树(RRTX)方法。为了应对以约束条件突然出现、消失或移动为特征的动态环境所带来的挑战,运动规划器能够在无人机导航过程中巧妙地识别环境变化并计算无碰撞路径。动态场景生成器集成了无人机模拟器和障碍物信息,可在基于 Unity 的模拟环境中有效模拟无人机障碍物和预定飞行模式。使用的模拟器是 Flight Mare,这是一款多功能四旋翼飞行器模拟器,采用 Unity 图形引擎和物理引擎进行动态模拟。通过全面的模拟,验证了所提出的方法,证明了它在使无人机自主导航动态环境并成功避开障碍物方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unmanned aerial vehicle path planning with hybrid motion algorithm for obstacle avoidance
Unmanned aerial vehicles (UAVs) are gaining prominence in autonomously navigating diverse terrains, requiring the capability to establish collision-free trajectories and adapt them on-the-fly to changing environments. This study's central contribution lies in devising an optimized motion planning framework tailored for UAVs operating amidst dynamic scenarios. This framework comprises two integral components: an optimized motion planner and a dynamic scenario generator. To enhance trajectory optimization, the optimized motion planner enhances the Rapidly-exploring Random Tree (RRTX) method with a Covariant Hamiltonian Optimization for Motion Planning (CHOMP) algorithm-based optimizer. Addressing the challenges posed by dynamic environments characterized by abrupt appearance, disappearance, or shifting of constraints, the motion planner adeptly identifies environmental changes and computes collision-free paths during UAV navigation. The dynamic scenario generator integrates a UAV simulator and barrier information, effectively emulating UAV obstacles and intended flight patterns within a Unity-based simulation environment. The simulator employed is Flight Mare, a versatile quadrotor simulator that employs Unity's graphics engine and a physics engine for dynamic simulations. Through comprehensive simulations, the proposed approach is validated, demonstrating its efficacy in enabling UAVs to autonomously navigate dynamic environments while avoiding obstacles successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信