使用阶梯式串联片加强喷流混合

IF 1.1 4区 工程技术 Q4 MECHANICS
S. Venkatramanan, S. Thanigaiarasu, M. Kaushik
{"title":"使用阶梯式串联片加强喷流混合","authors":"S. Venkatramanan, S. Thanigaiarasu, M. Kaushik","doi":"10.47176/jafm.17.05.2217","DOIUrl":null,"url":null,"abstract":"Mixing characteristics of jet emerging from a subsonic nozzle exit has been experimented and the results are compared with uncontrolled jet and controlled jet configurations. The mixing enhancement was achieved using a passive method of jet control in which tandem tabs arrangement with rectangular cross section are fixed at the nozzle exit. Two Tab configurations, the Tandem tab (TT) and Stepped Tandem Tab (STT) are used to enhance the mixing characteristics of the jet, the aspect ratio (length /width) of the tabs was 1.67 offering a blockage ratio of 9.55% to the nozzle exit. The blockage ratio of TT and STT configurations are maintained to be equal so that the mixing characteristics can be compared. The axial and radial jet spread are compared for nozzle exit Mach numbers of 0.6, 0.8 and 1.0. The TT controlled jet offered a potential core reduction of 63%, 78% and 82% for Mach numbers 0.6, 0.8 and 1.0 respectively. The STT controlled jet offered a potential core reduction of 89%, 90% and 85% for Mach numbers 0.6, 0.8 and 1.0 respectively. The radial spread of uncontrolled jet, controlled jet with TT and STT are plotted at several X/D locations and found that the controlled jets have more jet spread in both radial directions. A simulation is conducted for jets with exit Mach number 0.8 and the results are validated with the experimental findings. Based on the preliminary experimentation and computation, the STT controlled jet achieved better jet mixing through more potential core reduction and radial spread characteristics as compared to the TT configuration and base nozzle.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Jet Mixing using Stepped Tandem Tabs\",\"authors\":\"S. Venkatramanan, S. Thanigaiarasu, M. Kaushik\",\"doi\":\"10.47176/jafm.17.05.2217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixing characteristics of jet emerging from a subsonic nozzle exit has been experimented and the results are compared with uncontrolled jet and controlled jet configurations. The mixing enhancement was achieved using a passive method of jet control in which tandem tabs arrangement with rectangular cross section are fixed at the nozzle exit. Two Tab configurations, the Tandem tab (TT) and Stepped Tandem Tab (STT) are used to enhance the mixing characteristics of the jet, the aspect ratio (length /width) of the tabs was 1.67 offering a blockage ratio of 9.55% to the nozzle exit. The blockage ratio of TT and STT configurations are maintained to be equal so that the mixing characteristics can be compared. The axial and radial jet spread are compared for nozzle exit Mach numbers of 0.6, 0.8 and 1.0. The TT controlled jet offered a potential core reduction of 63%, 78% and 82% for Mach numbers 0.6, 0.8 and 1.0 respectively. The STT controlled jet offered a potential core reduction of 89%, 90% and 85% for Mach numbers 0.6, 0.8 and 1.0 respectively. The radial spread of uncontrolled jet, controlled jet with TT and STT are plotted at several X/D locations and found that the controlled jets have more jet spread in both radial directions. A simulation is conducted for jets with exit Mach number 0.8 and the results are validated with the experimental findings. Based on the preliminary experimentation and computation, the STT controlled jet achieved better jet mixing through more potential core reduction and radial spread characteristics as compared to the TT configuration and base nozzle.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.05.2217\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.05.2217","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

对从亚音速喷嘴出口喷出的射流的混合特性进行了实验,并将实验结果与不受控制的射流和受控制的射流配置进行了比较。混合增强是通过一种被动的射流控制方法实现的,即在喷嘴出口处固定矩形截面的串联片。采用了串联片(TT)和阶梯串联片(STT)两种配置来增强射流的混合特性,串联片的长宽比(长/宽)为 1.67,对喷嘴出口的阻塞率为 9.55%。TT 和 STT 配置的阻塞比保持相等,以便对混合特性进行比较。比较了喷嘴出口马赫数为 0.6、0.8 和 1.0 时的轴向和径向射流扩散情况。在马赫数为 0.6、0.8 和 1.0 的情况下,TT 控制的射流可分别减少 63%、78% 和 82% 的潜在核心。STT 控制喷流在马赫数为 0.6、0.8 和 1.0 时可分别减少 89%、90% 和 85% 的潜在核心。在几个 X/D 位置绘制了非受控喷流、带 TT 和 STT 的受控喷流的径向扩散图,发现受控喷流在两个径向方向上都有更大的喷流扩散。对出口马赫数为 0.8 的射流进行了模拟,结果与实验结果进行了验证。根据初步实验和计算结果,与 TT 配置和基础喷嘴相比,STT 控制喷流通过更多的潜在核心减少和径向扩散特性实现了更好的喷流混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement of Jet Mixing using Stepped Tandem Tabs
Mixing characteristics of jet emerging from a subsonic nozzle exit has been experimented and the results are compared with uncontrolled jet and controlled jet configurations. The mixing enhancement was achieved using a passive method of jet control in which tandem tabs arrangement with rectangular cross section are fixed at the nozzle exit. Two Tab configurations, the Tandem tab (TT) and Stepped Tandem Tab (STT) are used to enhance the mixing characteristics of the jet, the aspect ratio (length /width) of the tabs was 1.67 offering a blockage ratio of 9.55% to the nozzle exit. The blockage ratio of TT and STT configurations are maintained to be equal so that the mixing characteristics can be compared. The axial and radial jet spread are compared for nozzle exit Mach numbers of 0.6, 0.8 and 1.0. The TT controlled jet offered a potential core reduction of 63%, 78% and 82% for Mach numbers 0.6, 0.8 and 1.0 respectively. The STT controlled jet offered a potential core reduction of 89%, 90% and 85% for Mach numbers 0.6, 0.8 and 1.0 respectively. The radial spread of uncontrolled jet, controlled jet with TT and STT are plotted at several X/D locations and found that the controlled jets have more jet spread in both radial directions. A simulation is conducted for jets with exit Mach number 0.8 and the results are validated with the experimental findings. Based on the preliminary experimentation and computation, the STT controlled jet achieved better jet mixing through more potential core reduction and radial spread characteristics as compared to the TT configuration and base nozzle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信