{"title":"论由单项式倾斜代数产生的簇倾斜代数关系","authors":"Melissa DiMarco","doi":"10.1016/j.jaca.2024.100016","DOIUrl":null,"url":null,"abstract":"<div><p>First constructed by Fomin and Zelevinski <span>[13]</span>, cluster algebras have been studied from many different perspectives. One such perspective is the study of cluster tilted algebras. We focus on when <em>C</em> is a monomial tilted algebras and <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> its associated cluster tilted algebra. We show the set of partial derivatives of the Keller potential form a minimal set of relations for <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and we show that if <em>C</em> is also Koszul, then there are overlap relations that can be used to determine if <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is Koszul. We use the tools of noncommutative Gröbner basis theory to prove these results.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"10 ","pages":"Article 100016"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827724000068/pdfft?md5=c4be9e88e623b3465a4504a71130ef70&pid=1-s2.0-S2772827724000068-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the relations for the cluster tilted algebra resulting from a monomial tilted algebra\",\"authors\":\"Melissa DiMarco\",\"doi\":\"10.1016/j.jaca.2024.100016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>First constructed by Fomin and Zelevinski <span>[13]</span>, cluster algebras have been studied from many different perspectives. One such perspective is the study of cluster tilted algebras. We focus on when <em>C</em> is a monomial tilted algebras and <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> its associated cluster tilted algebra. We show the set of partial derivatives of the Keller potential form a minimal set of relations for <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> and we show that if <em>C</em> is also Koszul, then there are overlap relations that can be used to determine if <span><math><mover><mrow><mi>C</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is Koszul. We use the tools of noncommutative Gröbner basis theory to prove these results.</p></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"10 \",\"pages\":\"Article 100016\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000068/pdfft?md5=c4be9e88e623b3465a4504a71130ef70&pid=1-s2.0-S2772827724000068-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
簇代数最早是由 Fomin 和 Zelevinski [13] 构建的,人们从许多不同的角度对其进行了研究。其中一个视角就是对簇倾斜代数的研究。我们的研究重点是当 C 是单项式倾斜代数,而 C˜ 是其相关的簇倾斜代数时。我们证明凯勒势的偏导数集构成了 C˜ 的最小关系集,并证明如果 C 也是科斯祖尔,那么有重叠关系可用来确定 C˜ 是否是科斯祖尔。我们使用非交换格罗伯纳基础理论的工具来证明这些结果。
On the relations for the cluster tilted algebra resulting from a monomial tilted algebra
First constructed by Fomin and Zelevinski [13], cluster algebras have been studied from many different perspectives. One such perspective is the study of cluster tilted algebras. We focus on when C is a monomial tilted algebras and its associated cluster tilted algebra. We show the set of partial derivatives of the Keller potential form a minimal set of relations for and we show that if C is also Koszul, then there are overlap relations that can be used to determine if is Koszul. We use the tools of noncommutative Gröbner basis theory to prove these results.