解码抑郁症:利用变换器和可解释人工智能分析社交网络洞察,评估抑郁症严重程度

Tasnim Ahmed , Shahriar Ivan , Ahnaf Munir , Sabbir Ahmed
{"title":"解码抑郁症:利用变换器和可解释人工智能分析社交网络洞察,评估抑郁症严重程度","authors":"Tasnim Ahmed ,&nbsp;Shahriar Ivan ,&nbsp;Ahnaf Munir ,&nbsp;Sabbir Ahmed","doi":"10.1016/j.nlp.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><p>Depression is a mental state characterized by recurrent feelings of melancholy, hopelessness, and disinterest in activities, having a significant negative influence on everyday functioning and general well-being. Millions of users express their thoughts and emotions on social media platforms, which can be used as a rich source of data for early detection of depression. In this connection, this work leverages an ensemble of transformer-based architectures for quantifying the severity of depression from social media posts into four categories — non-depressed, mild, moderate, and severe. At first, a diverse range of preprocessing techniques is employed to enhance the quality and relevance of the input. Then, the preprocessed samples are passed through three variants of transformer-based models, namely vanilla BERT, BERTweet, and ALBERT, for generating predictions, which are combined using a weighted soft-voting approach. We conduct a comprehensive explainability analysis to gain deeper insights into the decision-making process, examining both local and global perspectives. Furthermore, to the best of our knowledge, we are the first ones to explore the extent to which a Large Language Model (LLM) like ‘ChatGPT’ can perform this task. Evaluation of the model on the publicly available ‘DEPTWEET’ dataset produces state-of-the-art performance with 13.5% improvement in AUC–ROC score.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"7 ","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294971912400027X/pdfft?md5=5d658d840266d01d808f9f0280aa58df&pid=1-s2.0-S294971912400027X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Decoding depression: Analyzing social network insights for depression severity assessment with transformers and explainable AI\",\"authors\":\"Tasnim Ahmed ,&nbsp;Shahriar Ivan ,&nbsp;Ahnaf Munir ,&nbsp;Sabbir Ahmed\",\"doi\":\"10.1016/j.nlp.2024.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Depression is a mental state characterized by recurrent feelings of melancholy, hopelessness, and disinterest in activities, having a significant negative influence on everyday functioning and general well-being. Millions of users express their thoughts and emotions on social media platforms, which can be used as a rich source of data for early detection of depression. In this connection, this work leverages an ensemble of transformer-based architectures for quantifying the severity of depression from social media posts into four categories — non-depressed, mild, moderate, and severe. At first, a diverse range of preprocessing techniques is employed to enhance the quality and relevance of the input. Then, the preprocessed samples are passed through three variants of transformer-based models, namely vanilla BERT, BERTweet, and ALBERT, for generating predictions, which are combined using a weighted soft-voting approach. We conduct a comprehensive explainability analysis to gain deeper insights into the decision-making process, examining both local and global perspectives. Furthermore, to the best of our knowledge, we are the first ones to explore the extent to which a Large Language Model (LLM) like ‘ChatGPT’ can perform this task. Evaluation of the model on the publicly available ‘DEPTWEET’ dataset produces state-of-the-art performance with 13.5% improvement in AUC–ROC score.</p></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"7 \",\"pages\":\"Article 100079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S294971912400027X/pdfft?md5=5d658d840266d01d808f9f0280aa58df&pid=1-s2.0-S294971912400027X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294971912400027X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294971912400027X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抑郁症是一种精神状态,其特征是反复出现忧郁、绝望和对活动不感兴趣的感觉,对日常功能和总体幸福感产生严重的负面影响。数以百万计的用户在社交媒体平台上表达自己的想法和情绪,这可以作为早期检测抑郁症的丰富数据来源。为此,本研究利用基于变换器的架构组合,将社交媒体帖子中的抑郁严重程度量化为四个类别--非抑郁、轻度、中度和重度。首先,采用多种预处理技术来提高输入的质量和相关性。然后,将预处理后的样本通过三种基于转换器的变体模型(即 vanilla BERT、BERTweet 和 ALBERT)生成预测结果,并使用加权软投票方法将预测结果进行组合。我们进行了全面的可解释性分析,从局部和全局两个角度对决策过程进行了深入研究。此外,据我们所知,我们是第一个探索像 "ChatGPT "这样的大型语言模型(LLM)能在多大程度上完成这项任务的人。我们在公开的 "DEPTWEET "数据集上对该模型进行了评估,结果表明该模型的 AUC-ROC 分数提高了 13.5%,达到了最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Decoding depression: Analyzing social network insights for depression severity assessment with transformers and explainable AI

Decoding depression: Analyzing social network insights for depression severity assessment with transformers and explainable AI

Depression is a mental state characterized by recurrent feelings of melancholy, hopelessness, and disinterest in activities, having a significant negative influence on everyday functioning and general well-being. Millions of users express their thoughts and emotions on social media platforms, which can be used as a rich source of data for early detection of depression. In this connection, this work leverages an ensemble of transformer-based architectures for quantifying the severity of depression from social media posts into four categories — non-depressed, mild, moderate, and severe. At first, a diverse range of preprocessing techniques is employed to enhance the quality and relevance of the input. Then, the preprocessed samples are passed through three variants of transformer-based models, namely vanilla BERT, BERTweet, and ALBERT, for generating predictions, which are combined using a weighted soft-voting approach. We conduct a comprehensive explainability analysis to gain deeper insights into the decision-making process, examining both local and global perspectives. Furthermore, to the best of our knowledge, we are the first ones to explore the extent to which a Large Language Model (LLM) like ‘ChatGPT’ can perform this task. Evaluation of the model on the publicly available ‘DEPTWEET’ dataset produces state-of-the-art performance with 13.5% improvement in AUC–ROC score.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信