不规则空间数据静止性的自归一化推论

Pub Date : 2024-05-15 DOI:10.1016/j.jspi.2024.106191
Richeng Hu , Ngai-Hang Chan , Rongmao Zhang
{"title":"不规则空间数据静止性的自归一化推论","authors":"Richeng Hu ,&nbsp;Ngai-Hang Chan ,&nbsp;Rongmao Zhang","doi":"10.1016/j.jspi.2024.106191","DOIUrl":null,"url":null,"abstract":"<div><p>A self-normalized approach for testing the stationarity of a <span><math><mi>d</mi></math></span>-dimensional random field is considered in this paper. Because the discrete Fourier transforms (DFT) at fundamental frequencies of a second-order stationary random field are asymptotically uncorrelated (see Bandyopadhyay and Subba Rao, 2017), one can construct a stationarity test based on the sample covariance of the DFTs. Such a test is usually inferior because it involves an overestimated scale parameter that leads to low size and power. To circumvent this shortcoming, this paper proposes two self-normalized statistics based on extreme value and partial sum of the sample covariance of the DFTs. Under certain regularity conditions, it is shown that the proposed tests converge to functionals of Brownian motion. Simulations and a data analysis demonstrate the outstanding performance of the proposed tests.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-normalized inference for stationarity of irregular spatial data\",\"authors\":\"Richeng Hu ,&nbsp;Ngai-Hang Chan ,&nbsp;Rongmao Zhang\",\"doi\":\"10.1016/j.jspi.2024.106191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A self-normalized approach for testing the stationarity of a <span><math><mi>d</mi></math></span>-dimensional random field is considered in this paper. Because the discrete Fourier transforms (DFT) at fundamental frequencies of a second-order stationary random field are asymptotically uncorrelated (see Bandyopadhyay and Subba Rao, 2017), one can construct a stationarity test based on the sample covariance of the DFTs. Such a test is usually inferior because it involves an overestimated scale parameter that leads to low size and power. To circumvent this shortcoming, this paper proposes two self-normalized statistics based on extreme value and partial sum of the sample covariance of the DFTs. Under certain regularity conditions, it is shown that the proposed tests converge to functionals of Brownian motion. Simulations and a data analysis demonstrate the outstanding performance of the proposed tests.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037837582400048X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837582400048X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑采用自归一化方法来测试 d 维随机场的静止性。由于二阶静止随机场基频的离散傅里叶变换(DFT)近似不相关(见 Bandyopadhyay 和 Subba Rao,2017 年),因此可以根据 DFT 的样本协方差构建静止性检验。这种检验通常效果较差,因为它涉及到一个被高估的尺度参数,导致规模和功率都较低。为了规避这一缺陷,本文提出了两种基于 DFT 样本协方差极值和偏和的自归一化统计量。在一定的正则条件下,本文证明了所提出的检验收敛于布朗运动的函数。模拟和数据分析证明了所提检验的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Self-normalized inference for stationarity of irregular spatial data

A self-normalized approach for testing the stationarity of a d-dimensional random field is considered in this paper. Because the discrete Fourier transforms (DFT) at fundamental frequencies of a second-order stationary random field are asymptotically uncorrelated (see Bandyopadhyay and Subba Rao, 2017), one can construct a stationarity test based on the sample covariance of the DFTs. Such a test is usually inferior because it involves an overestimated scale parameter that leads to low size and power. To circumvent this shortcoming, this paper proposes two self-normalized statistics based on extreme value and partial sum of the sample covariance of the DFTs. Under certain regularity conditions, it is shown that the proposed tests converge to functionals of Brownian motion. Simulations and a data analysis demonstrate the outstanding performance of the proposed tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信