豪斯多夫距离和弗雷谢特距离下的跨距

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Tsuri Farhana, Matthew J. Katz
{"title":"豪斯多夫距离和弗雷谢特距离下的跨距","authors":"Tsuri Farhana,&nbsp;Matthew J. Katz","doi":"10.1016/j.ipl.2024.106513","DOIUrl":null,"url":null,"abstract":"<div><p>We initiate the study of spanners under the Hausdorff and Fréchet distances. Let <em>S</em> be a set of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <em>ε</em> a non-negative real number. A subgraph <em>H</em> of the Euclidean graph over <em>S</em> is an <em>ε-Hausdorff-spanner</em> (resp., an <em>ε-Fréchet-spanner</em>) of <em>S</em>, if for any two points <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>S</mi></math></span> there exists a path <span><math><mi>P</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> in <em>H</em> between <em>u</em> and <em>v</em>, such that the Hausdorff distance (resp., the Fréchet distance) between <span><math><mi>P</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><mover><mrow><mi>u</mi><mi>v</mi></mrow><mo>‾</mo></mover></math></span> is at most <em>ε</em>. We show that any <em>t</em>-spanner of a planar point-set <em>S</em> is a <span><math><mfrac><mrow><msqrt><mrow><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-Hausdorff-spanner and a <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><msqrt><mrow><mn>5</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>3</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><mo>}</mo></math></span>-Fréchet spanner. We also prove that for any <span><math><mi>t</mi><mo>&gt;</mo><mn>1</mn></math></span>, there exist a set of points <em>S</em> and an <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Hausdorff-spanner of <em>S</em> and an <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Fréchet-spanner of <em>S</em>, where <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are constants, such that neither of them is a <em>t</em>-spanner.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"187 ","pages":"Article 106513"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanners under the Hausdorff and Fréchet distances\",\"authors\":\"Tsuri Farhana,&nbsp;Matthew J. Katz\",\"doi\":\"10.1016/j.ipl.2024.106513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We initiate the study of spanners under the Hausdorff and Fréchet distances. Let <em>S</em> be a set of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <em>ε</em> a non-negative real number. A subgraph <em>H</em> of the Euclidean graph over <em>S</em> is an <em>ε-Hausdorff-spanner</em> (resp., an <em>ε-Fréchet-spanner</em>) of <em>S</em>, if for any two points <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>S</mi></math></span> there exists a path <span><math><mi>P</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> in <em>H</em> between <em>u</em> and <em>v</em>, such that the Hausdorff distance (resp., the Fréchet distance) between <span><math><mi>P</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><mover><mrow><mi>u</mi><mi>v</mi></mrow><mo>‾</mo></mover></math></span> is at most <em>ε</em>. We show that any <em>t</em>-spanner of a planar point-set <em>S</em> is a <span><math><mfrac><mrow><msqrt><mrow><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-Hausdorff-spanner and a <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><msqrt><mrow><mn>5</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>3</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><mo>}</mo></math></span>-Fréchet spanner. We also prove that for any <span><math><mi>t</mi><mo>&gt;</mo><mn>1</mn></math></span>, there exist a set of points <em>S</em> and an <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Hausdorff-spanner of <em>S</em> and an <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Fréchet-spanner of <em>S</em>, where <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are constants, such that neither of them is a <em>t</em>-spanner.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"187 \",\"pages\":\"Article 106513\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000437\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000437","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们开始研究豪斯多夫距离和弗雷谢特距离下的跨距。假设 S 是 Rd 中的一个点集,ε 是一个非负实数。如果对于任意两个点 u,v∈S 在 H 中存在一条 u 和 v 之间的路径 P(u,v),且 P(u,v) 之间的豪斯多夫距离(res、我们证明了平面点集 S 的任何 t-跨距都是 t2-12-Hausdorff 跨距和 min{t2,5t2-2t-34}-Fréchet 跨距。我们还证明,对于任意 t>1,存在一个点集 S 以及 S 的 ε1-Hausdorff 旋转器和 S 的 ε2-Fréchet 旋转器,其中 ε1 和 ε2 是常数,使得它们都不是 t 旋转器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spanners under the Hausdorff and Fréchet distances

We initiate the study of spanners under the Hausdorff and Fréchet distances. Let S be a set of points in Rd and ε a non-negative real number. A subgraph H of the Euclidean graph over S is an ε-Hausdorff-spanner (resp., an ε-Fréchet-spanner) of S, if for any two points u,vS there exists a path P(u,v) in H between u and v, such that the Hausdorff distance (resp., the Fréchet distance) between P(u,v) and uv is at most ε. We show that any t-spanner of a planar point-set S is a t212-Hausdorff-spanner and a min{t2,5t22t34}-Fréchet spanner. We also prove that for any t>1, there exist a set of points S and an ε1-Hausdorff-spanner of S and an ε2-Fréchet-spanner of S, where ε1 and ε2 are constants, such that neither of them is a t-spanner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing Letters
Information Processing Letters 工程技术-计算机:信息系统
CiteScore
1.80
自引率
0.00%
发文量
70
审稿时长
7.3 months
期刊介绍: Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered. Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信