{"title":"豪斯多夫距离和弗雷谢特距离下的跨距","authors":"Tsuri Farhana, Matthew J. Katz","doi":"10.1016/j.ipl.2024.106513","DOIUrl":null,"url":null,"abstract":"<div><p>We initiate the study of spanners under the Hausdorff and Fréchet distances. Let <em>S</em> be a set of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <em>ε</em> a non-negative real number. A subgraph <em>H</em> of the Euclidean graph over <em>S</em> is an <em>ε-Hausdorff-spanner</em> (resp., an <em>ε-Fréchet-spanner</em>) of <em>S</em>, if for any two points <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>S</mi></math></span> there exists a path <span><math><mi>P</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> in <em>H</em> between <em>u</em> and <em>v</em>, such that the Hausdorff distance (resp., the Fréchet distance) between <span><math><mi>P</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><mover><mrow><mi>u</mi><mi>v</mi></mrow><mo>‾</mo></mover></math></span> is at most <em>ε</em>. We show that any <em>t</em>-spanner of a planar point-set <em>S</em> is a <span><math><mfrac><mrow><msqrt><mrow><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-Hausdorff-spanner and a <span><math><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><msqrt><mrow><mn>5</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>3</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><mo>}</mo></math></span>-Fréchet spanner. We also prove that for any <span><math><mi>t</mi><mo>></mo><mn>1</mn></math></span>, there exist a set of points <em>S</em> and an <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Hausdorff-spanner of <em>S</em> and an <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Fréchet-spanner of <em>S</em>, where <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are constants, such that neither of them is a <em>t</em>-spanner.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"187 ","pages":"Article 106513"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanners under the Hausdorff and Fréchet distances\",\"authors\":\"Tsuri Farhana, Matthew J. Katz\",\"doi\":\"10.1016/j.ipl.2024.106513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We initiate the study of spanners under the Hausdorff and Fréchet distances. Let <em>S</em> be a set of points in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> and <em>ε</em> a non-negative real number. A subgraph <em>H</em> of the Euclidean graph over <em>S</em> is an <em>ε-Hausdorff-spanner</em> (resp., an <em>ε-Fréchet-spanner</em>) of <em>S</em>, if for any two points <span><math><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>S</mi></math></span> there exists a path <span><math><mi>P</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> in <em>H</em> between <em>u</em> and <em>v</em>, such that the Hausdorff distance (resp., the Fréchet distance) between <span><math><mi>P</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><mover><mrow><mi>u</mi><mi>v</mi></mrow><mo>‾</mo></mover></math></span> is at most <em>ε</em>. We show that any <em>t</em>-spanner of a planar point-set <em>S</em> is a <span><math><mfrac><mrow><msqrt><mrow><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></msqrt></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-Hausdorff-spanner and a <span><math><mi>min</mi><mo></mo><mo>{</mo><mfrac><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><msqrt><mrow><mn>5</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>2</mn><mi>t</mi><mo>−</mo><mn>3</mn></mrow></msqrt></mrow><mrow><mn>4</mn></mrow></mfrac><mo>}</mo></math></span>-Fréchet spanner. We also prove that for any <span><math><mi>t</mi><mo>></mo><mn>1</mn></math></span>, there exist a set of points <em>S</em> and an <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-Hausdorff-spanner of <em>S</em> and an <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Fréchet-spanner of <em>S</em>, where <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ε</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are constants, such that neither of them is a <em>t</em>-spanner.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"187 \",\"pages\":\"Article 106513\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000437\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000437","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
我们开始研究豪斯多夫距离和弗雷谢特距离下的跨距。假设 S 是 Rd 中的一个点集,ε 是一个非负实数。如果对于任意两个点 u,v∈S 在 H 中存在一条 u 和 v 之间的路径 P(u,v),且 P(u,v) 之间的豪斯多夫距离(res、我们证明了平面点集 S 的任何 t-跨距都是 t2-12-Hausdorff 跨距和 min{t2,5t2-2t-34}-Fréchet 跨距。我们还证明,对于任意 t>1,存在一个点集 S 以及 S 的 ε1-Hausdorff 旋转器和 S 的 ε2-Fréchet 旋转器,其中 ε1 和 ε2 是常数,使得它们都不是 t 旋转器。
Spanners under the Hausdorff and Fréchet distances
We initiate the study of spanners under the Hausdorff and Fréchet distances. Let S be a set of points in and ε a non-negative real number. A subgraph H of the Euclidean graph over S is an ε-Hausdorff-spanner (resp., an ε-Fréchet-spanner) of S, if for any two points there exists a path in H between u and v, such that the Hausdorff distance (resp., the Fréchet distance) between and is at most ε. We show that any t-spanner of a planar point-set S is a -Hausdorff-spanner and a -Fréchet spanner. We also prove that for any , there exist a set of points S and an -Hausdorff-spanner of S and an -Fréchet-spanner of S, where and are constants, such that neither of them is a t-spanner.
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.