零点打击:测试用于抑郁检测的开箱即用 LLM 模型的泛化能力

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Julia Ohse , Bakir Hadžić , Parvez Mohammed , Nicolina Peperkorn , Michael Danner , Akihiro Yorita , Naoyuki Kubota , Matthias Rätsch , Youssef Shiban
{"title":"零点打击:测试用于抑郁检测的开箱即用 LLM 模型的泛化能力","authors":"Julia Ohse ,&nbsp;Bakir Hadžić ,&nbsp;Parvez Mohammed ,&nbsp;Nicolina Peperkorn ,&nbsp;Michael Danner ,&nbsp;Akihiro Yorita ,&nbsp;Naoyuki Kubota ,&nbsp;Matthias Rätsch ,&nbsp;Youssef Shiban","doi":"10.1016/j.csl.2024.101663","DOIUrl":null,"url":null,"abstract":"<div><p>Depression is a significant global health challenge. Still, many people suffering from depression remain undiagnosed. Furthermore, the assessment of depression can be subject to human bias. Natural Language Processing (NLP) models offer a promising solution. We investigated the potential of four NLP models (BERT, Llama2-13B, GPT-3.5, and GPT-4) for depression detection in clinical interviews. Participants (N = 82) underwent clinical interviews and completed a self-report depression questionnaire. NLP models inferred depression scores from interview transcripts. Questionnaire cut-off values for depression were used as a classifier for depression. GPT-4 showed the highest accuracy for depression classification (F1 score 0.73), while zero-shot GPT-3.5 initially performed with low accuracy (0.34), improved to 0.82 after fine-tuning, and achieved 0.68 with clustered data. GPT-4 estimates of symptom severity PHQ-8 score correlated strongly (r = 0.71) with true symptom severity. These findings demonstrate the potential of AI models for depression detection. However, further research is necessary before widespread deployment can be considered.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"88 ","pages":"Article 101663"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Shot Strike: Testing the generalisation capabilities of out-of-the-box LLM models for depression detection\",\"authors\":\"Julia Ohse ,&nbsp;Bakir Hadžić ,&nbsp;Parvez Mohammed ,&nbsp;Nicolina Peperkorn ,&nbsp;Michael Danner ,&nbsp;Akihiro Yorita ,&nbsp;Naoyuki Kubota ,&nbsp;Matthias Rätsch ,&nbsp;Youssef Shiban\",\"doi\":\"10.1016/j.csl.2024.101663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Depression is a significant global health challenge. Still, many people suffering from depression remain undiagnosed. Furthermore, the assessment of depression can be subject to human bias. Natural Language Processing (NLP) models offer a promising solution. We investigated the potential of four NLP models (BERT, Llama2-13B, GPT-3.5, and GPT-4) for depression detection in clinical interviews. Participants (N = 82) underwent clinical interviews and completed a self-report depression questionnaire. NLP models inferred depression scores from interview transcripts. Questionnaire cut-off values for depression were used as a classifier for depression. GPT-4 showed the highest accuracy for depression classification (F1 score 0.73), while zero-shot GPT-3.5 initially performed with low accuracy (0.34), improved to 0.82 after fine-tuning, and achieved 0.68 with clustered data. GPT-4 estimates of symptom severity PHQ-8 score correlated strongly (r = 0.71) with true symptom severity. These findings demonstrate the potential of AI models for depression detection. However, further research is necessary before widespread deployment can be considered.</p></div>\",\"PeriodicalId\":50638,\"journal\":{\"name\":\"Computer Speech and Language\",\"volume\":\"88 \",\"pages\":\"Article 101663\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Speech and Language\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000469\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000469","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

抑郁症是一项重大的全球性健康挑战。然而,许多抑郁症患者仍未得到诊断。此外,抑郁症的评估可能会受到人为偏见的影响。自然语言处理(NLP)模型提供了一个很有前景的解决方案。我们研究了四种 NLP 模型(BERT、Llama2-13B、GPT-3.5 和 GPT-4)在临床访谈中检测抑郁症的潜力。参与者(N = 82)接受了临床访谈,并填写了一份自我报告抑郁问卷。NLP 模型从访谈记录中推断出抑郁评分。问卷中的抑郁临界值被用作抑郁的分类器。GPT-4 显示出了最高的抑郁分类准确率(F1 得分为 0.73),而 GPT-3.5 最初的准确率较低(0.34),经过微调后提高到了 0.82,在使用聚类数据时达到了 0.68。GPT-4 估计的症状严重程度 PHQ-8 评分与真实症状严重程度密切相关(r = 0.71)。这些发现证明了人工智能模型在抑郁检测方面的潜力。不过,在考虑广泛应用之前,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-Shot Strike: Testing the generalisation capabilities of out-of-the-box LLM models for depression detection

Depression is a significant global health challenge. Still, many people suffering from depression remain undiagnosed. Furthermore, the assessment of depression can be subject to human bias. Natural Language Processing (NLP) models offer a promising solution. We investigated the potential of four NLP models (BERT, Llama2-13B, GPT-3.5, and GPT-4) for depression detection in clinical interviews. Participants (N = 82) underwent clinical interviews and completed a self-report depression questionnaire. NLP models inferred depression scores from interview transcripts. Questionnaire cut-off values for depression were used as a classifier for depression. GPT-4 showed the highest accuracy for depression classification (F1 score 0.73), while zero-shot GPT-3.5 initially performed with low accuracy (0.34), improved to 0.82 after fine-tuning, and achieved 0.68 with clustered data. GPT-4 estimates of symptom severity PHQ-8 score correlated strongly (r = 0.71) with true symptom severity. These findings demonstrate the potential of AI models for depression detection. However, further research is necessary before widespread deployment can be considered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Speech and Language
Computer Speech and Language 工程技术-计算机:人工智能
CiteScore
11.30
自引率
4.70%
发文量
80
审稿时长
22.9 weeks
期刊介绍: Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language. The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信