利用混合深度学习技术改进认知无线电网络的频谱预测模型

M.G. Sumithra , M. Suriya
{"title":"利用混合深度学习技术改进认知无线电网络的频谱预测模型","authors":"M.G. Sumithra ,&nbsp;M. Suriya","doi":"10.1016/j.ijin.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Cognitive Radio (CR) technology has been highlighted as one of the most likely answers to the issue of spectrum shortage with the rise of fifth generation and beyond communication. Secondary users (SUs) in cognitive radio networks (CRN) must continuously monitor the spectrum to forecast channel occupancy by primary users (PUs) based on fundamental factors, such as location, time, and RF band. A hybrid deep learning model called LSTM-MLP (Long Short-Term Memory-Multilayer Perceptron) is proposed to improve idle channel prediction probability thus reducing the overall sensing time by cognitive users during spectrum sensing. Performance evaluation for the proposed model is done in terms of prediction error and efficiency, the GSM-900 spectrum dataset demonstrates that LSTM-MLP performs better in terms of improved prediction accuracy compared to existing state-of-art prediction techniques.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 286-292"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603024000228/pdfft?md5=cdc0b0f67bdd877ac91a21ff75bc3bee&pid=1-s2.0-S2666603024000228-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved spectrum prediction model for cognitive radio networks using hybrid deep learning technique\",\"authors\":\"M.G. Sumithra ,&nbsp;M. Suriya\",\"doi\":\"10.1016/j.ijin.2024.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cognitive Radio (CR) technology has been highlighted as one of the most likely answers to the issue of spectrum shortage with the rise of fifth generation and beyond communication. Secondary users (SUs) in cognitive radio networks (CRN) must continuously monitor the spectrum to forecast channel occupancy by primary users (PUs) based on fundamental factors, such as location, time, and RF band. A hybrid deep learning model called LSTM-MLP (Long Short-Term Memory-Multilayer Perceptron) is proposed to improve idle channel prediction probability thus reducing the overall sensing time by cognitive users during spectrum sensing. Performance evaluation for the proposed model is done in terms of prediction error and efficiency, the GSM-900 spectrum dataset demonstrates that LSTM-MLP performs better in terms of improved prediction accuracy compared to existing state-of-art prediction techniques.</p></div>\",\"PeriodicalId\":100702,\"journal\":{\"name\":\"International Journal of Intelligent Networks\",\"volume\":\"5 \",\"pages\":\"Pages 286-292\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666603024000228/pdfft?md5=cdc0b0f67bdd877ac91a21ff75bc3bee&pid=1-s2.0-S2666603024000228-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666603024000228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603024000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着第五代及更先进通信技术的兴起,认知无线电(CR)技术已被视为解决频谱短缺问题的最有可能的方法之一。认知无线电网络(CRN)中的二级用户(SU)必须持续监测频谱,根据位置、时间和射频频段等基本因素预测一级用户(PU)的信道占用情况。本文提出了一种名为 LSTM-MLP(长短期记忆多层感知器)的混合深度学习模型,用于提高空闲信道预测概率,从而减少认知用户在频谱感知过程中的总体感知时间。通过 GSM-900 频谱数据集对拟议模型的预测误差和效率进行了性能评估,结果表明,与现有的先进预测技术相比,LSTM-MLP 在提高预测准确性方面表现更佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved spectrum prediction model for cognitive radio networks using hybrid deep learning technique

Cognitive Radio (CR) technology has been highlighted as one of the most likely answers to the issue of spectrum shortage with the rise of fifth generation and beyond communication. Secondary users (SUs) in cognitive radio networks (CRN) must continuously monitor the spectrum to forecast channel occupancy by primary users (PUs) based on fundamental factors, such as location, time, and RF band. A hybrid deep learning model called LSTM-MLP (Long Short-Term Memory-Multilayer Perceptron) is proposed to improve idle channel prediction probability thus reducing the overall sensing time by cognitive users during spectrum sensing. Performance evaluation for the proposed model is done in terms of prediction error and efficiency, the GSM-900 spectrum dataset demonstrates that LSTM-MLP performs better in terms of improved prediction accuracy compared to existing state-of-art prediction techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信