像素纹理指数算法及其应用

Xiaodan Sun, Xiaofang Sun
{"title":"像素纹理指数算法及其应用","authors":"Xiaodan Sun, Xiaofang Sun","doi":"10.14358/pers.23-00051r2","DOIUrl":null,"url":null,"abstract":"Image segmentation is essential for object-oriented analysis, and classification is a critical parameter influencing analysis accuracy. However, image classification and segmentation based on spectral features are easily perturbed by the high-frequency information of a high spatial\n resolution remotely sensed (HSRRS) image, degrading its classification and segmentation quality. This article first presents a pixel texture index (PTI) by describing the texture and edge in a local area surrounding a pixel. Indeed.. The experimental results highlight that the HSRRS image\n classification and segmentation quality can be effectively improved by combining it with the PTI image. Indeed, the overall accuracy improved from 7% to 14%, and the kappa can be increased from 11% to 24%, respectively.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"6 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pixel Texture Index Algorithm and Its Application\",\"authors\":\"Xiaodan Sun, Xiaofang Sun\",\"doi\":\"10.14358/pers.23-00051r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is essential for object-oriented analysis, and classification is a critical parameter influencing analysis accuracy. However, image classification and segmentation based on spectral features are easily perturbed by the high-frequency information of a high spatial\\n resolution remotely sensed (HSRRS) image, degrading its classification and segmentation quality. This article first presents a pixel texture index (PTI) by describing the texture and edge in a local area surrounding a pixel. Indeed.. The experimental results highlight that the HSRRS image\\n classification and segmentation quality can be effectively improved by combining it with the PTI image. Indeed, the overall accuracy improved from 7% to 14%, and the kappa can be increased from 11% to 24%, respectively.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"6 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00051r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00051r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像分割对于面向对象的分析至关重要,而分类是影响分析精度的关键参数。然而,基于光谱特征的图像分类和分割很容易受到高空间分辨率遥感(HSRRS)图像高频信息的干扰,从而降低其分类和分割质量。本文首先通过描述像素周围局部区域的纹理和边缘,提出了像素纹理指数(PTI)。确实如此。实验结果表明,通过将 HSRRS 图像与 PTI 图像相结合,可以有效提高 HSRRS 图像的分类和分割质量。事实上,整体准确率从 7% 提高到 14%,卡帕值从 11% 提高到 24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Pixel Texture Index Algorithm and Its Application
Image segmentation is essential for object-oriented analysis, and classification is a critical parameter influencing analysis accuracy. However, image classification and segmentation based on spectral features are easily perturbed by the high-frequency information of a high spatial resolution remotely sensed (HSRRS) image, degrading its classification and segmentation quality. This article first presents a pixel texture index (PTI) by describing the texture and edge in a local area surrounding a pixel. Indeed.. The experimental results highlight that the HSRRS image classification and segmentation quality can be effectively improved by combining it with the PTI image. Indeed, the overall accuracy improved from 7% to 14%, and the kappa can be increased from 11% to 24%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信