{"title":"Bag1 蛋白丢失会使小鼠胚胎成纤维细胞对谷胱甘肽耗竭敏感","authors":"Atsushi Inose-Maruyama , Hayato Irokawa , Kouki Takeda , Keiko Taguchi , Masanobu Morita , Masayuki Yamamoto , Masato Sasaki , Shusuke Kuge","doi":"10.1016/j.cstres.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Bcl2-associated athanogene-1 protein (Bag1) acts as a co-chaperone of heat shock protein 70 and heat shock cognate 70 and regulates multiple cellular processes, including cell proliferation, apoptosis, environmental stress response, and drug resistance. Since <em>Bag1</em> knockout mice exhibited fetal lethality, the <em>in vivo</em> function of Bag1 remains unclear. In this study, we established a mouse line expressing <em>Bag1</em> gene missing exon 5, which corresponds to an encoding region for the interface of heat shock protein 70/heat shock cognate 70. Despite mice carrying homoalleles of the Bag1 mutant (<em>Bag1</em><sup>Δex5</sup>) expressing undetectable levels of Bag1, <em>Bag1</em><sup>Δex5</sup> homozygous mice developed without abnormalities. Bag1<sup>Δex5</sup> protein was found to be highly unstable in cells and <em>in vitro</em>. We found that the growth of mouse embryonic fibroblasts derived from <em>Bag1</em><sup>Δex5</sup>-homo mice was attenuated by doxorubicin and a glutathione (GSH) synthesis inhibitor, buthionine sulfoximine. In response to buthionine sulfoximine, <em>Bag1</em><sup>Δex5</sup>-mouse embryonic fibroblasts exhibited a higher dropping rate of GSH relative to the oxidized glutathione level. In addition, Bag1 might mitigate cellular hydrogen peroxide levels. Taken together, our results demonstrate that the loss of Bag1 did not affect mouse development and that Bag1 is involved in intracellular GSH homeostasis, namely redox homeostasis.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1355814524000750/pdfft?md5=d9ac7bd29276d3d73e5c6e8432b99683&pid=1-s2.0-S1355814524000750-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bag1 protein loss sensitizes mouse embryonic fibroblasts to glutathione depletion\",\"authors\":\"Atsushi Inose-Maruyama , Hayato Irokawa , Kouki Takeda , Keiko Taguchi , Masanobu Morita , Masayuki Yamamoto , Masato Sasaki , Shusuke Kuge\",\"doi\":\"10.1016/j.cstres.2024.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bcl2-associated athanogene-1 protein (Bag1) acts as a co-chaperone of heat shock protein 70 and heat shock cognate 70 and regulates multiple cellular processes, including cell proliferation, apoptosis, environmental stress response, and drug resistance. Since <em>Bag1</em> knockout mice exhibited fetal lethality, the <em>in vivo</em> function of Bag1 remains unclear. In this study, we established a mouse line expressing <em>Bag1</em> gene missing exon 5, which corresponds to an encoding region for the interface of heat shock protein 70/heat shock cognate 70. Despite mice carrying homoalleles of the Bag1 mutant (<em>Bag1</em><sup>Δex5</sup>) expressing undetectable levels of Bag1, <em>Bag1</em><sup>Δex5</sup> homozygous mice developed without abnormalities. Bag1<sup>Δex5</sup> protein was found to be highly unstable in cells and <em>in vitro</em>. We found that the growth of mouse embryonic fibroblasts derived from <em>Bag1</em><sup>Δex5</sup>-homo mice was attenuated by doxorubicin and a glutathione (GSH) synthesis inhibitor, buthionine sulfoximine. In response to buthionine sulfoximine, <em>Bag1</em><sup>Δex5</sup>-mouse embryonic fibroblasts exhibited a higher dropping rate of GSH relative to the oxidized glutathione level. In addition, Bag1 might mitigate cellular hydrogen peroxide levels. Taken together, our results demonstrate that the loss of Bag1 did not affect mouse development and that Bag1 is involved in intracellular GSH homeostasis, namely redox homeostasis.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1355814524000750/pdfft?md5=d9ac7bd29276d3d73e5c6e8432b99683&pid=1-s2.0-S1355814524000750-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1355814524000750\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814524000750","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Bag1 protein loss sensitizes mouse embryonic fibroblasts to glutathione depletion
Bcl2-associated athanogene-1 protein (Bag1) acts as a co-chaperone of heat shock protein 70 and heat shock cognate 70 and regulates multiple cellular processes, including cell proliferation, apoptosis, environmental stress response, and drug resistance. Since Bag1 knockout mice exhibited fetal lethality, the in vivo function of Bag1 remains unclear. In this study, we established a mouse line expressing Bag1 gene missing exon 5, which corresponds to an encoding region for the interface of heat shock protein 70/heat shock cognate 70. Despite mice carrying homoalleles of the Bag1 mutant (Bag1Δex5) expressing undetectable levels of Bag1, Bag1Δex5 homozygous mice developed without abnormalities. Bag1Δex5 protein was found to be highly unstable in cells and in vitro. We found that the growth of mouse embryonic fibroblasts derived from Bag1Δex5-homo mice was attenuated by doxorubicin and a glutathione (GSH) synthesis inhibitor, buthionine sulfoximine. In response to buthionine sulfoximine, Bag1Δex5-mouse embryonic fibroblasts exhibited a higher dropping rate of GSH relative to the oxidized glutathione level. In addition, Bag1 might mitigate cellular hydrogen peroxide levels. Taken together, our results demonstrate that the loss of Bag1 did not affect mouse development and that Bag1 is involved in intracellular GSH homeostasis, namely redox homeostasis.