从 Eµ-TCL1 CLL 小鼠模型中汲取的经验教训

IF 5 3区 医学 Q1 HEMATOLOGY
Alessia Floerchinger , Martina Seiffert
{"title":"从 Eµ-TCL1 CLL 小鼠模型中汲取的经验教训","authors":"Alessia Floerchinger ,&nbsp;Martina Seiffert","doi":"10.1053/j.seminhematol.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human <em>TCL1</em>. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.</p></div>","PeriodicalId":21684,"journal":{"name":"Seminars in hematology","volume":"61 3","pages":"Pages 194-200"},"PeriodicalIF":5.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003719632400060X/pdfft?md5=ff43430d75dc744267e0ad85a5990a2a&pid=1-s2.0-S003719632400060X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lessons learned from the Eµ-TCL1 mouse model of CLL\",\"authors\":\"Alessia Floerchinger ,&nbsp;Martina Seiffert\",\"doi\":\"10.1053/j.seminhematol.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human <em>TCL1</em>. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.</p></div>\",\"PeriodicalId\":21684,\"journal\":{\"name\":\"Seminars in hematology\",\"volume\":\"61 3\",\"pages\":\"Pages 194-200\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S003719632400060X/pdfft?md5=ff43430d75dc744267e0ad85a5990a2a&pid=1-s2.0-S003719632400060X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003719632400060X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in hematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003719632400060X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

20 多年来,Eµ-TCL1 小鼠模型一直被用于研究慢性淋巴细胞白血病(CLL)的病理生物学以及新型疗法的临床前测试。由于人类 TCL1 的 B 细胞特异性过表达,这些小鼠随着年龄的增长会出现类似 CLL 的疾病。由于在 Eµ-TCL1 小鼠中没有发现在患者身上发现的已知驱动突变,因此该模型反映人类 CLL 的可靠性备受争议。必须承认的是,这种小鼠模型是开发靶向疗法的关键,这些疗法旨在抑制构成型 B 细胞受体(BCR)信号传导,这是导致 CLL 的主要驱动因素。BCR信号抑制剂由于疗效显著,已成为大部分 CLL 患者的标准疗法。Eµ-TCL1模型进一步推进了我们对CLL生物学的了解,这归功于将该小鼠品系与各种转基因小鼠模型进行交叉研究,并证明了CLL细胞内在和外在疾病驱动因素的相关性。这些研究有助于显示淋巴组织中的肿瘤微环境与 CLL 疾病进展和免疫逃逸的相关性。人们清楚地认识到,CLL 细胞塑造并依赖于基质细胞和免疫细胞,免疫抑制机制和 T 细胞衰竭导致了 CLL 的进展。基于这一认识,针对 CLL 的新免疫疗法策略开始进行临床试验,但迄今为止结果令人失望。由于其中一些疗法在 Eµ-TCL1 小鼠模型中有效,因此出现了在这些小鼠中进行临床前研究的可转化性问题。本综述旨在总结我们过去几十年在 Eµ-TCL1 小鼠模型中研究 CLL 类疾病的经验教训。文章的重点是该模型的缺陷和局限性,以及利用该模型开发新型治疗策略以实现治愈 CLL 患者的目标所获得的知识和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lessons learned from the Eµ-TCL1 mouse model of CLL

The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human TCL1. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seminars in hematology
Seminars in hematology 医学-血液学
CiteScore
6.20
自引率
2.80%
发文量
30
审稿时长
35 days
期刊介绍: Seminars in Hematology aims to present subjects of current importance in clinical hematology, including related areas of oncology, hematopathology, and blood banking. The journal''s unique issue structure allows for a multi-faceted overview of a single topic via a curated selection of review articles, while also offering a variety of articles that present dynamic and front-line material immediately influencing the field. Seminars in Hematology is devoted to making the important and current work accessible, comprehensible, and valuable to the practicing physician, young investigator, clinical practitioners, and internists/paediatricians with strong interests in blood diseases. Seminars in Hematology publishes original research, reviews, short communications and mini- reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信