Junhui Zhao , Ruixing Ren , Yao Wu , Qingmiao Zhang , Wei Xu , Dongming Wang , Lisheng Fan
{"title":"物联网场景下基于信道估计的毫米波大规模多输入多输出(MIMO)系统的信道估计","authors":"Junhui Zhao , Ruixing Ren , Yao Wu , Qingmiao Zhang , Wei Xu , Dongming Wang , Lisheng Fan","doi":"10.1016/j.dcan.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>To improve the accuracy and efficiency of time-varying channels estimation algorithms for millimeter Wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems in Internet of Vehicles (IoV) scenarios, the paper proposes a deep learning (DL) algorithm, Squeeze-and-Excitation Attention Residual Network (SEARNet), which integrates Squeeze-and-Excitation Attention (SEAttention) mechanism and residual module. Specifically, SEARNet considers the channel information as an image matrix, and embeds a SEAttention module in residual module to construct the SEAttention-Residual block. Through a data-driven approach, SEARNet can effectively extract key information from the channel matrix using the SEAttention mechanism, thereby reducing noise interference and estimating the channel in an accurate and efficient manner. The simulation results show that compared to two traditional and two DL channel estimation algorithms, the proposed SEARNet can achieve a maximum reduction in normalized mean square error (NMSE) of 97.66% and 84.49% at SNR of -10 dB, 78.18% at SNR of 5 dB, and 43.51% at SNR of 10 dB, respectively.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 3","pages":"Pages 778-786"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SEAttention-residual based channel estimation for mmWave massive MIMO systems in IoV scenarios\",\"authors\":\"Junhui Zhao , Ruixing Ren , Yao Wu , Qingmiao Zhang , Wei Xu , Dongming Wang , Lisheng Fan\",\"doi\":\"10.1016/j.dcan.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To improve the accuracy and efficiency of time-varying channels estimation algorithms for millimeter Wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems in Internet of Vehicles (IoV) scenarios, the paper proposes a deep learning (DL) algorithm, Squeeze-and-Excitation Attention Residual Network (SEARNet), which integrates Squeeze-and-Excitation Attention (SEAttention) mechanism and residual module. Specifically, SEARNet considers the channel information as an image matrix, and embeds a SEAttention module in residual module to construct the SEAttention-Residual block. Through a data-driven approach, SEARNet can effectively extract key information from the channel matrix using the SEAttention mechanism, thereby reducing noise interference and estimating the channel in an accurate and efficient manner. The simulation results show that compared to two traditional and two DL channel estimation algorithms, the proposed SEARNet can achieve a maximum reduction in normalized mean square error (NMSE) of 97.66% and 84.49% at SNR of -10 dB, 78.18% at SNR of 5 dB, and 43.51% at SNR of 10 dB, respectively.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 3\",\"pages\":\"Pages 778-786\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824000592\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000592","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
SEAttention-residual based channel estimation for mmWave massive MIMO systems in IoV scenarios
To improve the accuracy and efficiency of time-varying channels estimation algorithms for millimeter Wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems in Internet of Vehicles (IoV) scenarios, the paper proposes a deep learning (DL) algorithm, Squeeze-and-Excitation Attention Residual Network (SEARNet), which integrates Squeeze-and-Excitation Attention (SEAttention) mechanism and residual module. Specifically, SEARNet considers the channel information as an image matrix, and embeds a SEAttention module in residual module to construct the SEAttention-Residual block. Through a data-driven approach, SEARNet can effectively extract key information from the channel matrix using the SEAttention mechanism, thereby reducing noise interference and estimating the channel in an accurate and efficient manner. The simulation results show that compared to two traditional and two DL channel estimation algorithms, the proposed SEARNet can achieve a maximum reduction in normalized mean square error (NMSE) of 97.66% and 84.49% at SNR of -10 dB, 78.18% at SNR of 5 dB, and 43.51% at SNR of 10 dB, respectively.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.