振荡风力涡轮机叶片截面下游的声学噪声测量

IF 1.1 4区 工程技术 Q4 MECHANICS
†. A.R.Davari, S. Hadavand
{"title":"振荡风力涡轮机叶片截面下游的声学噪声测量","authors":"†. A.R.Davari, S. Hadavand","doi":"10.47176/jafm.17.05.2347","DOIUrl":null,"url":null,"abstract":"Acoustic measurements were performed using microphone downstream of a 2-D wind turbine blade section in wind tunnel. The experiments have been carried out in both static and oscillatory pitching cases. The latter is usually experienced by the blades in actual circumstances. The microphone was 1.5 chords downstream of the airfoil and the measurements were conducted at three transverse positions, i.e. behind the trailing edge, midway between the trailing edge and the ground and very close to the ground. A CFD simulation of the flowfield has also been conducted using Fluent to correlate the acoustic behavior to the phenomena observed in the flowfield around the blade. The results show that the acoustic noise heard by a listener located on the ground is higher and stronger than that positioned downstream of the trailing edge, showing the ground effect on acoustic noise reverberation. The aerodynamic noise heard by the listener, changes from a treble to bass sound as the angle of attack increases. Beyond stall, the flow is dominated by the vortices shed into wake and the acoustic noises would be at very low frequencies which would result in a bass sound accompanied by structural vibration. In high angle of attack range, such noises can hardly be heard by a normal person but have a very destructive role on blade structure.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic Noise Measurement Downstream of an Oscillating Wind Turbine Blade Section\",\"authors\":\"†. A.R.Davari, S. Hadavand\",\"doi\":\"10.47176/jafm.17.05.2347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic measurements were performed using microphone downstream of a 2-D wind turbine blade section in wind tunnel. The experiments have been carried out in both static and oscillatory pitching cases. The latter is usually experienced by the blades in actual circumstances. The microphone was 1.5 chords downstream of the airfoil and the measurements were conducted at three transverse positions, i.e. behind the trailing edge, midway between the trailing edge and the ground and very close to the ground. A CFD simulation of the flowfield has also been conducted using Fluent to correlate the acoustic behavior to the phenomena observed in the flowfield around the blade. The results show that the acoustic noise heard by a listener located on the ground is higher and stronger than that positioned downstream of the trailing edge, showing the ground effect on acoustic noise reverberation. The aerodynamic noise heard by the listener, changes from a treble to bass sound as the angle of attack increases. Beyond stall, the flow is dominated by the vortices shed into wake and the acoustic noises would be at very low frequencies which would result in a bass sound accompanied by structural vibration. In high angle of attack range, such noises can hardly be heard by a normal person but have a very destructive role on blade structure.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.05.2347\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.05.2347","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在风洞中使用传声器对二维风力涡轮机叶片的下游部分进行了声学测量。实验在静态和振荡俯仰两种情况下进行。后者通常是叶片在实际情况下经历的。传声器位于机翼下游 1.5 弦处,测量在三个横向位置进行,即后缘后方、后缘与地面中间以及非常靠近地面的位置。此外,还使用 Fluent 对流场进行了 CFD 模拟,以便将声学行为与叶片周围流场中观察到的现象联系起来。结果显示,位于地面上的听者听到的声学噪声比位于后缘下游的听者听到的噪声更高、更强,这表明了地面对声学噪声混响的影响。随着攻角的增大,听者听到的气动噪声从高音变为低音。超过失速后,气流主要由涡流流向尾流,声学噪声的频率会非常低,从而产生低音,并伴有结构振动。在高攻角范围内,正常人几乎听不到这种噪音,但对叶片结构却有很大的破坏作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic Noise Measurement Downstream of an Oscillating Wind Turbine Blade Section
Acoustic measurements were performed using microphone downstream of a 2-D wind turbine blade section in wind tunnel. The experiments have been carried out in both static and oscillatory pitching cases. The latter is usually experienced by the blades in actual circumstances. The microphone was 1.5 chords downstream of the airfoil and the measurements were conducted at three transverse positions, i.e. behind the trailing edge, midway between the trailing edge and the ground and very close to the ground. A CFD simulation of the flowfield has also been conducted using Fluent to correlate the acoustic behavior to the phenomena observed in the flowfield around the blade. The results show that the acoustic noise heard by a listener located on the ground is higher and stronger than that positioned downstream of the trailing edge, showing the ground effect on acoustic noise reverberation. The aerodynamic noise heard by the listener, changes from a treble to bass sound as the angle of attack increases. Beyond stall, the flow is dominated by the vortices shed into wake and the acoustic noises would be at very low frequencies which would result in a bass sound accompanied by structural vibration. In high angle of attack range, such noises can hardly be heard by a normal person but have a very destructive role on blade structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信