{"title":"用于锂硫电池隔膜改性的 MXene 基材料","authors":"","doi":"10.1016/j.cjsc.2024.100337","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-sulfur (Li–S) batteries are one of the promising energy storage systems. However, rapid capacity attenuation caused by shuttle effect of soluble polysulfides is a major challenge in practical application. The separator modification is one complementary countermeasure besides the construction of sulfur host materials in cathode. MXene is one type of outstanding candidates for promoting redox kinetics of sulfur species. Herein, recent advances of MXene-based materials as separator modifiers are summarized. The importance of high conductivity and catalytic effects in promoting catalytic conversion of polysulfides and suppressing shuttle effect of polysulfides has been highlighted, and the superiority of MXene for improving reversible capacity and cycling stability has been demonstrated. New strategies for the design of MXene-based separator modifiers are proposed to improve energy density and lifetime. The review provides new perspectives for future development of high-performance Li–S batteries.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100337"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MXene-based materials for separator modification of lithium-sulfur batteries\",\"authors\":\"\",\"doi\":\"10.1016/j.cjsc.2024.100337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-sulfur (Li–S) batteries are one of the promising energy storage systems. However, rapid capacity attenuation caused by shuttle effect of soluble polysulfides is a major challenge in practical application. The separator modification is one complementary countermeasure besides the construction of sulfur host materials in cathode. MXene is one type of outstanding candidates for promoting redox kinetics of sulfur species. Herein, recent advances of MXene-based materials as separator modifiers are summarized. The importance of high conductivity and catalytic effects in promoting catalytic conversion of polysulfides and suppressing shuttle effect of polysulfides has been highlighted, and the superiority of MXene for improving reversible capacity and cycling stability has been demonstrated. New strategies for the design of MXene-based separator modifiers are proposed to improve energy density and lifetime. The review provides new perspectives for future development of high-performance Li–S batteries.</p></div>\",\"PeriodicalId\":10151,\"journal\":{\"name\":\"结构化学\",\"volume\":\"43 7\",\"pages\":\"Article 100337\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"结构化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254586124001648\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124001648","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
MXene-based materials for separator modification of lithium-sulfur batteries
Lithium-sulfur (Li–S) batteries are one of the promising energy storage systems. However, rapid capacity attenuation caused by shuttle effect of soluble polysulfides is a major challenge in practical application. The separator modification is one complementary countermeasure besides the construction of sulfur host materials in cathode. MXene is one type of outstanding candidates for promoting redox kinetics of sulfur species. Herein, recent advances of MXene-based materials as separator modifiers are summarized. The importance of high conductivity and catalytic effects in promoting catalytic conversion of polysulfides and suppressing shuttle effect of polysulfides has been highlighted, and the superiority of MXene for improving reversible capacity and cycling stability has been demonstrated. New strategies for the design of MXene-based separator modifiers are proposed to improve energy density and lifetime. The review provides new perspectives for future development of high-performance Li–S batteries.
期刊介绍:
Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.