绿松石制氢共流反应器的设计与建模

Francesco Cenvinzo , Emanuele Alberto Scelzo , Giancarlo Sorrentino , Mario Commodo , Andrea D'Anna
{"title":"绿松石制氢共流反应器的设计与建模","authors":"Francesco Cenvinzo ,&nbsp;Emanuele Alberto Scelzo ,&nbsp;Giancarlo Sorrentino ,&nbsp;Mario Commodo ,&nbsp;Andrea D'Anna","doi":"10.1016/j.jfueco.2024.100123","DOIUrl":null,"url":null,"abstract":"<div><p>This work focuses on the design of a reactor for producing clean hydrogen from methane pyrolysis in the form of the so-called “turquoise hydrogen”. In addition to its simple geometry, the fundamental concept and the main novelty of the proposed method rely on using part of the methane to produce the required heat needed for the thermal decomposition of methane (TDM). The reactor configuration for hydrogen production is shown to produce significant advantages in terms of greenhouse gas (GHG) emissions. A reactive flow CFD model incorporating also soot formation mechanism has been first developed and validated with experimental results available in the literature and then used to design and characterize the performances of proposed reactor configuration. 3D CFD simulations have been carried out to predict the behavior of the reactor configuration; a sensitivity analysis is used for clearing the aspect related to key environmental parameters, e.g., the global warming impact (GWI). The real potential of the proposed design resides in the low emissions and high efficiency with which hydrogen is produced at the various operating conditions (very flexible reactor), albeit subject to the presence of carbon by-product. This suggests that this type of methane conversion system could be a good substitute for the most common hydrogen production technologies.</p></div>","PeriodicalId":100556,"journal":{"name":"Fuel Communications","volume":"19 ","pages":"Article 100123"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666052024000189/pdfft?md5=8fa46a43d3c49b337b4f89ad5b8cbcac&pid=1-s2.0-S2666052024000189-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design and modeling of a co-flow reactor for turquoise hydrogen production\",\"authors\":\"Francesco Cenvinzo ,&nbsp;Emanuele Alberto Scelzo ,&nbsp;Giancarlo Sorrentino ,&nbsp;Mario Commodo ,&nbsp;Andrea D'Anna\",\"doi\":\"10.1016/j.jfueco.2024.100123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work focuses on the design of a reactor for producing clean hydrogen from methane pyrolysis in the form of the so-called “turquoise hydrogen”. In addition to its simple geometry, the fundamental concept and the main novelty of the proposed method rely on using part of the methane to produce the required heat needed for the thermal decomposition of methane (TDM). The reactor configuration for hydrogen production is shown to produce significant advantages in terms of greenhouse gas (GHG) emissions. A reactive flow CFD model incorporating also soot formation mechanism has been first developed and validated with experimental results available in the literature and then used to design and characterize the performances of proposed reactor configuration. 3D CFD simulations have been carried out to predict the behavior of the reactor configuration; a sensitivity analysis is used for clearing the aspect related to key environmental parameters, e.g., the global warming impact (GWI). The real potential of the proposed design resides in the low emissions and high efficiency with which hydrogen is produced at the various operating conditions (very flexible reactor), albeit subject to the presence of carbon by-product. This suggests that this type of methane conversion system could be a good substitute for the most common hydrogen production technologies.</p></div>\",\"PeriodicalId\":100556,\"journal\":{\"name\":\"Fuel Communications\",\"volume\":\"19 \",\"pages\":\"Article 100123\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666052024000189/pdfft?md5=8fa46a43d3c49b337b4f89ad5b8cbcac&pid=1-s2.0-S2666052024000189-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666052024000189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666052024000189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的重点是设计一种反应器,以所谓 "绿松石氢 "的形式从甲烷热解中生产清洁氢气。除了简单的几何形状外,该方法的基本概念和主要新颖之处在于利用部分甲烷产生甲烷热分解(TDM)所需的热量。该制氢反应器配置在温室气体(GHG)排放方面具有显著优势。首先开发了一个反应流 CFD 模型,该模型也包含烟尘形成机制,并与文献中的实验结果进行了验证,然后用于设计和表征拟议反应器配置的性能。三维 CFD 仿真用于预测反应器配置的行为;敏感性分析用于清除与关键环境参数相关的方面,如全球变暖影响(GWI)。拟议设计的真正潜力在于,尽管存在碳副产品,但在各种运行条件下(非常灵活的反应器),氢气的排放量低且生产效率高。这表明,这种甲烷转化系统可以很好地替代最常见的制氢技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and modeling of a co-flow reactor for turquoise hydrogen production

This work focuses on the design of a reactor for producing clean hydrogen from methane pyrolysis in the form of the so-called “turquoise hydrogen”. In addition to its simple geometry, the fundamental concept and the main novelty of the proposed method rely on using part of the methane to produce the required heat needed for the thermal decomposition of methane (TDM). The reactor configuration for hydrogen production is shown to produce significant advantages in terms of greenhouse gas (GHG) emissions. A reactive flow CFD model incorporating also soot formation mechanism has been first developed and validated with experimental results available in the literature and then used to design and characterize the performances of proposed reactor configuration. 3D CFD simulations have been carried out to predict the behavior of the reactor configuration; a sensitivity analysis is used for clearing the aspect related to key environmental parameters, e.g., the global warming impact (GWI). The real potential of the proposed design resides in the low emissions and high efficiency with which hydrogen is produced at the various operating conditions (very flexible reactor), albeit subject to the presence of carbon by-product. This suggests that this type of methane conversion system could be a good substitute for the most common hydrogen production technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信